
Dynamic Data Paths in OpenSER

as an Application of End User

Development

Diploma Thesis

by

Bastian Friedrich

October 2006 - March 2007

Albert Ludwig University of Freiburg

Faculty of Applied Sciences

Chair of Communication Systems

Prof. Dr. Gerhard Schneider

Committee: Prof. Dr. Gerhard Schneider, Prof. Dr. Günter Müller

ii

Core Dumped Blues

Well, my terminal's locked up, and I ain't got any Mail,

And I can't recall the last time that my program didn't fail;

I've got stacks in my structs, I've got arrays in my queues,

I've got the: Segmentation violation � Core dumped blues.

If you think that it's nice that you get what you C,

Then go: illogical statement with your whole family,

'Cause the Supreme Court ain't the only place with: Bus error views.

I've got the: Segmentation violation � Core dumped blues.

On a PDP-11, life should be a breeze,

But with VAXen in the house even magnetic tapes would freeze.

Now you might think that unlike VAXen I'd know who I abuse,

I've got the: Segmentation violation � Core dumped blues.

(Greg Boyd, 1980)

iv

Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine ande-

ren als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich

oder sinngemäÿ aus verö�entlichten Schriften entnommen wurden, als solche kenntlich

gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht

auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Freiburg, 26. März 2007

. .

Bastian Friedrich

v

vi

Danksagungen

Für die Unterstützung bei meiner Diplomarbeit möchte ich Herrn Professor Dr. Gerhard

Schneider recht herzlich danken. Er hat mich in seiner Arbeitsgruppe herzlich aufgenom-

men. Fachlichen und inhaltlichen Rat erhielt ich zu jedem Zeitpunkt von Herrn Dirk von

Suchodoletz, wofür ich ihm ebenfalls meinen Dank aussprechen möchte.

Für die Dauer der Diplomarbeit wurde ich freundlich von der Firma Collax GmbH auf-

genommen und erhielt alle nur erdenkliche Unterstützung. Besonders bedanken möchte

ich mich beim CEO und CTO des Unternehmens, Herrn Boris Nalbach, der für meine

Sorgen und Probleme immer ein o�enes Ohr hatte, sowie bei Herrn Andreas Hofmeister,

der mir zu jeder Zeit mit Rat und Tat zur Seite stand.

Mein ganz besonderer Dank gilt meiner lieben Kirsten, die mir auf dem Weg zur

vorliegenden Arbeit und in jeder anderen Situation meines Lebens liebevoll zur Seite

stand, mir Mut machte, wenn nicht alles nach Plan lief, und sich mit mir freute, wenn

ich Erfolg hatte.

Meinen Eltern möchte ich für die Geduld danken, die sie mit mir in den vergangenen

Jahren hatten, und für die Unterstützung, die sie mir auf vielerlei Art zukommen lieÿen.

Viele Ungenannte haben mich in den letzten Monaten und Jahren begleitet. Auch

wenn Ihr hier nicht genannt werdet: ich werd's Euch nicht vergessen!

vii

viii

Zusammenfassung (Deutsch)

OpenSER ist eine leistungsfähige Open-Source-Lösung, die praktisch sämtliche im SIP-

Protokoll de�nierte serverseitige Funktionalitäten abdeckt. In vielen groÿen SIP-Umge-

bungen sind der SIP Express Router SER oder dessen Abkömmling OpenSER im Ein-

satz.

Die internen Schnittstellen der Software, über die Daten aus Datenbanken bezogen

werden, sind strukturell auf ein relationales Modell ausgerichtet; existierende Anbindun-

gen beschränken sich auf MySQL, PostgreSQL sowie die ODBC-Schnittstelle. In vielen

Umgebungen stehen äquivalente Daten jedoch in anderer Form, vor allem in LDAP-

Verzeichnissen, zur Verfügung.

Aufgabe der Arbeit war, eine Datenbankschnittstelle zu entwickeln, die es dem exis-

tierenden OpenSER-Code ermöglicht, auf beliebig kon�gurierbare Daten-Backends zu-

rückzugreifen. Dazu ist jedoch nicht nur eine strukturelle, sondern in den meisten Fällen

auch eine inhaltliche Transformation von Daten notwendig.

Aus diesem Grunde wurde OpenSER mit einer Perl-Schnittstelle ausgestattet. Ei-

ne fundamentale Infrastrukturschicht, die auch losgelöst von den Datenbank-Aufgaben

vielfältig genutzt werden kann, wird über die entwickelte �Perl virtual database� (Perl-

VDB) zum Übertragungsweg für die Daten; Adaptoren verwandeln relationale �insert�-,

�update�-, �delete�- und �query�-Anfragen in Funktionsaufrufe für Perl.

Ein Exkurs in das Thema End User Development abstrahiert den Vorgang der Einbet-

tung von Programmiersprachen. In dieser Arbeit werden vor allem technische Aspekte

des End User Development diskutiert und die gefundenen Antworten auf die konkrete

Situation im OpenSER übertragen.

Die Thematik wurde in den üblichen Schritten der Softwaretechnik bearbeitet. In

der Analyse-Phase wurden u.A. mittels Anwendungsfällen die anfallenden Daten un-

tersucht und anschlieÿend kategorisiert. Während des Designs wurden die notwendigen

Schnittstellen etabliert und eine Klassenhierarchie entwickelt. In der vorliegenden Arbeit

werden auch die Implementierung der entwickelten Lösung sowie die dabei auftretenden

Probleme dokumentiert.

ix

x

Abstract (English)

OpenSER is a powerful open source solution that provides almost all server functionali-

ties de�ned in the SIP protocol. The SIP Express Router SER or its fork OpenSER are

in action in many large SIP environments.

The internal interfaces of the software that transmit data from databases are struc-

turally dependent on a relational model; existing back-ends are restricted to MySQL,

PostgreSQL and the ODBC interfaces. On the other hand, in many real world environ-

ments equivalent data are stored in other forms, particularly in LDAP directories.

The task of this thesis was the development of a database interface that makes it

possible for existing OpenSER code to access arbitrary, con�gurable data back-ends.

However, to accomplish this, not only a structural transformation, but in most cases

also a transformation of content is necessary.

Due to this, OpenSER was equipped with a Perl interface. A fundamental infra-

structure layer that may also be used in multiple ways independent of database requests

becomes a transmission route for data through the separately developed �Perl virtual

database� (Perl VDB); adaptors transform the relational �insert�, �update�, �delete� and

�query� operations into Perl function calls.

A digression to the topic of End User Development abstracts the process of embedding

a programming language. In this thesis, mainly technical aspects of End User Develop-

ment are discussed. The answers found are then transferred to the particular situation

in OpenSER.

The theme was examined with the usual steps of software engineering. In the analysis

phase, use cases and other techniques were applied to evaluate and categorize the incur-

ring data. During the design, necessary interfaces were established and a class hierarchy

was developed. In the present work, the implementation of the developed solutions as

well as the arising problems are documented.

xi

xii

Contents

1. Introduction 1

1.1. From telephony... 1

1.2. ... to Voice over IP . 1

1.3. About this work . 2

1.3.1. Objectives . 2

1.3.2. Structure of this thesis . 3

1.3.3. References and related work . 3

I. VoIP technology 5

2. Telephony and VoIP 7

2.1. Telephony . 7

2.2. A brave new VoIP world . 8

2.3. The SIP protocol . 9

2.4. Open source technology . 12

2.4.1. Asterisk . 12

2.4.2. OpenSER . 13

2.4.3. Other products . 13

3. OpenSER 15

3.1. What is OpenSER? . 15

3.2. OpenSER from a user's perspective . 16

3.2.1. The OpenSER con�guration . 16

3.2.2. A sample routing block . 16

3.2.3. Database bindings . 18

3.2.4. Pseudo variables and AVPs . 19

3.2.5. In a nutshell... 20

xiii

Contents

3.3. OpenSER from a code perspective . 21

3.3.1. Types of modules . 22

3.3.2. Export structure . 22

3.3.3. Parameter �xup . 23

3.3.4. In a nutshell... 24

4. Data handling 27

4.1. About data and information . 27

4.1.1. Distinguishing data and information 27

4.1.2. Types of information . 28

4.1.2.1. Con�guration data . 28

4.1.2.2. Transitional data . 28

4.1.2.3. Authentication and authorization 29

4.2. Technologies . 29

4.2.1. The simple life: plain text . 30

4.2.2. Relational databases and SQL . 30

4.2.3. Directory services: LDAP . 31

4.2.4. Authentication services . 32

4.2.4.1. RADIUS and DIAMETER 33

4.2.4.2. Kerberos . 34

4.2.5. ENUM . 34

4.2.5.1. Status quo . 35

II. Analysis and speci�cation 37

5. Requirements analysis 39

5.1. Use case analysis . 39

5.1.1. Use case: Incoming phone call . 41

5.1.2. Use case: Outgoing phone call . 42

5.1.3. Use case: Call transfer (External: VoIP/POTS, internal: VoIP) . 43

5.1.4. Use case: Call de�ection . 43

5.1.5. Use case: conference calls (internal, external, mixed) 44

5.1.6. Use case: SIP registration (attaching a phone) and authentication 44

5.1.7. Use case: user and authorization/permission management 45

5.1.8. Use case: personal self-administration 46

xiv

Contents

5.1.9. Use case: Accounting . 47

5.1.10. Use case: ACD, IVR, Call hunt groups 47

5.2. Categorizing data . 47

5.3. Data handling in OpenSER . 48

5.3.1. Data paths in OpenSER . 51

5.3.2. Data management bindings in OpenSER 52

5.4. Re�ning the requirements . 53

6. Speci�cation 55

6.1. A �exible database backend for OpenSER 55

6.2. Digression: con�guring vs. programming 56

6.3. Functions in OpenSER modules . 58

6.4. Expressing a data path . 60

6.4.1. Possible tradeo�s . 60

6.4.2. Evaluating the options . 62

III. End User Development 65

7. End User Development in dynamic systems 67

7.1. Embeddable languages . 68

7.1.1. Perl . 68

7.1.2. PHP . 69

7.1.3. Lua . 69

7.1.4. Python . 69

7.1.5. Ruby . 70

7.1.6. LISP and Scheme . 70

7.1.7. Basic dialects . 70

7.1.8. Other languages . 71

7.2. Analyzing EUD implementations . 71

7.2.1. Apache and mod_perl . 71

7.2.1.1. Analyzing the framework 72

7.2.2. O�ce suites and macro languages 73

7.2.2.1. Technical aspects of Visual Basic for Applications 74

7.2.3. Gimp and Scheme . 74

7.3. Properties of EUD environments . 74

xv

Contents

7.3.1. Interfaces . 75

7.3.2. Design constraints . 76

IV. Design, Implementation, Testing 77

8. Design 79

8.1. Considerations on an EUD environment for OpenSER 79

8.1.1. Choosing a language . 80

8.2. Data paths . 82

8.3. Design patterns . 83

8.3.1. The bridge pattern . 83

8.3.2. The adapter pattern . 84

8.4. A Perl module . 84

8.5. Virtual database . 86

8.5.1. Class structure . 87

8.5.2. Adapters . 89

9. Implementation 91

9.1. Tools . 91

9.1.1. Build environment . 91

9.1.2. Revision control . 92

9.2. Development process . 92

9.3. Embedding Perl . 93

9.3.1. The Perl interpreter . 94

9.3.2. Data types in Perl . 94

9.3.3. Perl memory management . 95

9.4. Perl module . 95

9.4.1. The module itself . 96

9.4.1.1. The �dlopen problem� 97

9.4.1.2. The �reload problem� . 98

9.4.1.3. The �global variable problem� 99

9.4.2. The Perl extension . 99

9.4.2.1. The �constants problem� 101

9.4.2.2. The ��xup problem� . 102

9.4.3. The Perl library . 104

xvi

Contents

9.4.4. Documentation . 106

9.5. perlvdb module . 107

9.5.1. Module interface . 108

9.5.2. Database access functions . 108

9.5.3. Data transformation . 109

9.5.4. Perl classes and adapters . 110

10.Testing 111

10.1. Debugging OpenSER . 111

10.2. Testing environment . 112

10.2.1. sipsak . 112

10.2.2. SIPp . 112

10.2.3. Computer hardware . 113

10.2.4. Benchmark module . 113

10.3. Test cases . 113

10.4. Testing procedure and results . 115

10.4.1. Stress testing and performance evaluation 115

10.4.2. Invalid messages . 117

10.4.3. Invalid Perl code . 117

10.4.4. Regression tests and coverage analysis 118

V. Discussion 119

11.Discussion and Conclusion 121

11.1. Revisiting Use Cases . 121

11.2. Speci�c solutions . 124

11.2.1. Aliases . 124

11.2.1.1. alias_db and perlvdb 125

11.2.1.2. Aliasing in Perl . 126

11.2.2. Authentication . 127

11.2.3. Accounting . 127

11.2.4. Authorization . 128

11.3. Perl vs. ... 130

11.3.1. Perl vs. VDB . 130

11.3.1.1. VDB usage . 131

xvii

Contents

11.3.2. Perl vs. SEAS . 133

11.3.3. Perl and VDB vs. ldap modules 134

11.3.4. Perl vs. SIP-CGI . 134

11.4. The VDB approach . 134

11.5. Perspective . 135

VI. Appendix 137

A. Accompanying CD and website 139

B. Glossary 141

C. Tools 145

Bibliography 147

xviii

1. Introduction

1.1. From telephony...

After the invention of the telephone by A. G. Bell in the 1870s, there were no great

changes for a century: A microphone and a speaker, connected with a copper wire,

transported speech signals from one device to another. But then a hundred years later,

telephone carriers began to migrate from analog to digital signaling, ISDN was intro-

duced, convenience functions were added, and voice quality was increased. Mobile tele-

phony began to conquer the world. Besides that, everything remained the same.

The end of the 20th century brought another substantial change in communication

systems: The Internet developed from a scienti�c testbed to a global main stream com-

munication method. Although a packet switched network such as the Internet intro-

duces a number of new problems when transporting multimedia and voice data, it opens

a whole new world of features and properties for users. Around 2004, Internet telephony

(Voice over Internet Protocol, VoIP) began to replace conventional telephony.

1.2. ... to Voice over IP

While end users are supplied with cheap multi function devices that provide for a smooth

transition from conventional telephony to VoIP, enterprise scale setups can either be

realized with � often expensive � commercial hardware or on the basis of open source

software.

The recent years have brought the second large VoIP wave. The �rst wave of Internet

telephony � driven mainly by residential users and technology enthusiasts � led to imple-

mentations that were using non-standardized proprietary protocols or the now more or

less deprecated H.323 protocol. These products were not capable of ful�lling the users'

needs and reliability requirements: the speech quality was considerably lower than in

traditional telephony, communication was half duplex, or the phone calls failed after

1

Chapter 1: Introduction

some time. Today, modern, SIP based systems can in fact replace standard telephony

networks and are also ful�lling enterprise requirements for reliability and service quality.

There now is a considerable number of software projects targeting most aspects of

VoIP communication. Two of these projects are the SIP Express Router SER and its

fork OpenSER, the latter being the primary target of this work.

1.3. About this work

Commercial and open source products provide a foundation for the establishment of

VoIP services. Nonetheless, a full featured VoIP network requires a large amount of

setup and maintenance e�ort. Many products � including OpenSER � require a �ne

grained tuning of their environments.

Munich based Collax GmbH has been looking into the integration of a VoIP system

with their technology platform, a Linux distribution dedicated to the needs of the small

and medium size business (SMB) market. While evaluating available solutions, it be-

came apparent that the integration of OpenSER with a long-established open source

based environment raises a number of problems, one of which is the migration of user

identity information between the platform's LDAP service and OpenSER's relational

user database. This work aims to �nd a solution for this problem.

Work on the thesis started on 27th of September 2006. This document was submitted

on 27th of March 2007.

1.3.1. Objectives

While the integration of OpenSER with LDAP environments may be a very interesting

concept from a commercial point of view, the topic of data access will be examined

and discussed on the background of various technologies. OpenSER's data access layer

will be extended so that accessing arbitrary data sources is possible. By describing a

few real world cases, the helpfulness of the solutions found will be proved. Among these

examples will be the core functionalities of authentication and authorization mechanisms

of OpenSER as well as the ubiquitous aliasing mechanisms that make up an important

part of a SIP proxy.

2

1.3: About this work

1.3.2. Structure of this thesis

After the discussion of the fundamental technologies and OpenSER as a software prod-

uct, the software implementation used to solve the described integration problems is

developed with standard software engineering techniques. After re�ning the require-

ments, a solution is speci�ed. A separate part about End User Development abstracts

the ideas developed during the speci�cation.

The implementation of the concepts will be discussed in detail. A discussion of the

provided implementations will complete this work, providing a basis for future elabora-

tion on the topic.

The developed code and other documentation is available on the accompanying CD.

See Appendix A on page 139 for details.

1.3.3. References and related work

The literature used for this thesis includes a wide variety of di�erent topics, as the

subjects of interest are spread over a wide area. The bibliography thus can be divided

into the following sub-categories:

• Internet drafts, Requests For Comments (RFCs) and VoIP standards

• VoIP basics, technology and software solutions

• Database, authentication, authorization and accounting technologies

• End User Development and programming languages

• Perl literature and technical documentation

Due to the practical approach of this thesis, a large part of the references is non-academic

literature.

The topic of End User Development is a rather new approach in software engineering.

The textbook �End User Development� edited by Lieberman, Paternò and Wulf [35]

provides a comprehensive analysis of the topic.

While numerous books deal with various aspects of Voice over IP, the German textbook

�Internet-Telefonie. VoIP mit Asterisk und SER� [16] by Flaig, Ho�mann and Langauf

provides a structural and technical introduction to the deployment of VoIP networks

based on the most important open source products.

3

Chapter 1: Introduction

Common features of traditional telephony networks can be gathered from feature

descriptions of network carriers ([54, 48]) and from textbooks about communication

([13, pp. 288�], [27, pp. 165�], [22, pp. 36�]), while feature descriptions of VoIP

networks can be found in [28, pp. 55�] and [24].

4

Part I.

VoIP technology

5

2. Telephony and VoIP

In common enterprise size communica-

tion systems, two parallel networks are de-

ployed: an IP based computer network is

complemented by a telephony system.

Gateways, �rewalls and other infrastruc-

ture devices oppose telephone exchanges

(PBX) that basically provide a similar func-

tionality for di�erent media. This duality

leads to a doubled infrastructure invest-

ment, two parallel points of failure, and

two separate administrative instances �

especially with regards to user manage-

ment. Applications live in either world, synergy e�ects from the integration of these

networks do not exist1.

Development in the past decade has created the opportunity for solving these prob-

lems. Voice over IP technologies have initiated a movement towards converging networks

that unite the telephony and IP data �ows in a single media network.

Not only does this save organizations

from establishing (and buying) separate

network infrastructure while reducing ad-

ministrative costs; value is added by new

features that are only made possible by

this integration.

2.1. Telephony

Conventional telephony, often refered to as POTS (Plain Old Telephone System) or

PSTN (Public Switched Telephone Network), reserves a dedicated line for every com-

munication (circuit switched network). With the ISDN (Integrated Services Digital
1Modern specialized, expensive PBX hardware may provide access vectors for similarly specialized and
similarly expensive proprietary software components to accomplish a certain amount of integration.
These technologies are far from being standardized. Interoperability between di�erent systems is
non-existent. 7

Chapter 2: Telephony and VoIP

Network), out-of-band signaling was introduced, so that signals for ringing, hanging up

etc. are transmitted over a di�erent logical channel.

The Internet Protocol IP provides a packet switched network. A shared medium is

used for multiple parallel communication streams. Based on the IP protocol, a number of

dedicated telephony protocols have evolved. During the last years, the Session Initiation

Protocol SIP and its relatives have taken over market leadership and are regarded by

experts to be the most important VoIP protocol for the next years. This thesis is going

to deal with products that are based on the SIP protocol group. These protocols will

be described in more detail below.

2.2. A brave new VoIP world

While numerous commercial as well as free products have emerged into the market

during the last years, development is still in its beginning. Simple telephony � dialing a

number, letting a telephone device ring, making a call and hanging up � is well possible,

but neither the comfortable features of modern POTS networks that customers have

already got used to nor the added features of network integration are easily accessible.

Choosing the right equipment, the deployment of a VoIP system not only can recre-

ate the features of a traditional telephony network (these features can be found in the

literature, see section 1.3.3). The integration of multimedia and Internet communica-

tion networks can also add to their respective values by creating a world of new usage

possibilities and thus raises the users' productivity. A number of these new features are

described in [28, pp. 19�, pp 53�]. While many of these features deal with the buzz

word �Uni�ed Messaging� (UM), making the aggregation of multiple user communica-

tion channels possible, the term �Computer Telephony Integration� (CTI) refers to the

convergence of information available for call center and help desk employees.

During the evolution of modern Voice over IP networks, a number of networking

standards have been developed. The �rst important standard, developed by the ITU-T

(International Telephony Union, Telecommunication Standardization Unit) in the mid

1990s, was H.323. It was dedicated to create a layer on top of IP that lets other ITU-T

protocols work on top of it. H.323 closely resembles the ISDN protocols.

The next notable standard was the Session Initiation Protocol (SIP). While H.323 was

developed by telephony specialists, SIP was speci�ed by the Internet specialists of the

IETF (Internet Engineering Task Force) in 1999. Within a short time, SIP became the

most important VoIP protocol, although H.323 still maintains a market share.

8

2.3: The SIP protocol

A number of other protocols have since been established. The most prominent system

is the commercial Skype, originally a softphone with extraordinary ease of use. Today,

a small number of Skype hardphones is available as well. As the Skype protocol is

proprietary, obfuscated and not an open standard, only a small number of licensed

products use this protocol. These products do not include local servers, so Skype is not

a good solution for the SMB market and networks deployed therein.

The open source instant messaging protocol Jabber led to the development of exten-

sions such as Jingle, which is used by Google's �Google Talk� software as a multimedia

transport protocol. Today, Jingle is not regarded to be of importance in global VoIP

networks.

2.3. The SIP protocol

This section will discuss the basis of the software solutions examined, the Session Initi-

ation Protocol (SIP). As a deep understanding of the protocol and its relatives will not

be necessary for this work, details will be omitted. A good explanation of all protocols

can be found in [16].

When talking about SIP telephony, in fact a whole family of protocols is concerned.

The term �SIP based telephony� is thus more appropriate. The Session Initiation Pro-

tocol is responsible for the establishment of a communication channel only.

Real world SIP environments use these protocols2:

• SIP [46] � Session initiation. Handles the signaling of telephony.

• SDP [23] � Session Description Protocol. Negotiates the parameters of the com-

munication, such as media codecs.

• RTP [50] � Realtime Transport Protocol. Transports the media streams between

user agents.

• RTCP � Realtime Transport Control Protocol. In fact part of the RTP (and

speci�ed in the same RFC). Signals timing information between user agents for

jitter and bandwidth control. Not all user agents implement RTCP.

2Theoretically, the protocols mentioned could be used in other contexts or in conjunction with other
protocols. This is not commonly practiced, however.

9

Chapter 2: Telephony and VoIP

The SIP protocol is a rather slim text-based protocol. Its grammar and syntax bears

a resemblance to the Hyper Text Transfer Protocol, HTTP. SIP messages may be ex-

changed over UDP or TCP, possibly encrypted via TLS; the UDP transport is the most

common underlying layer, TCP is not implemented in all products.

SIP is based on a request/response model. There are only two fundamental types of

agents in the model, which are user agents and servers (referred to as �proxies� in SIP).

Despite the name, �user agents� in the SIP perspective may be server programs, such as

media servers (e.g. providing �music on hold�), back-to-back user agents (b2bua, may

e.g. be used for call exchange or conference rooms) or media gateways that mediate

between SIP telephony and other technologies.

During a call, user agents are categorized as User Agent Clients (UAC) that send a

request, and User Agent Servers (UAS) that react on the request.

While user agents send and receive SIP messages, servers forward and possibly modify

messages according to their con�guration � thus their name �proxy�.

SIP messages consist of a request or response line, a header, and (possibly) a message

body. A request line starts with a method , denoting the requested service. The most

important methods are REGISTER, INVITE, ACK, BYE and CANCEL. Each request

is destined to a recipient URI (uniform resource identi�er), referred to as the message

RURI. A RURI often speci�es a user SIP address, but as well may describe a destination

host.

Every request should be answered by a response, including a return code and a de-

scription.

The following image shows a minimal message �ow for a phone call from Alice to Bob:

10

2.3: The SIP protocol

The image should be self-explanatory. Alice's INVITE message to the proxy could

look like this:

1 INVITE sip:bob@server.de SIP/2.0

2 Via: SIP/2.0/UDP 172.16.3.247:2051;branch=z9hG4bK-8z1ns0sfgqdz;rport

3 From: "alice" <sip:alice@server.de>;tag=6pwp0e5bcq

4 To: <sip:bob@server.de>

5 Call-ID: 3c26b281afc8-owtmk2f6oogz@snom360-000413231835

6 CSeq: 1 INVITE

7 Max-Forwards: 70

8 Contact: <sip:alice@172.16.3.247:2051;line=fazh8jjv>;flow-id=1

9 P-Key-Flags: resolution="31x13", keys="4"

10 User-Agent: snom360/6.2.3

11 Accept: application/sdp

12 Allow: INVITE, ACK, CANCEL, BYE, REFER, OPTIONS, NOTIFY, SUBSCRIBE, PRACK, MESSAGE, INFO

13 Allow-Events: talk, hold, refer

14 Supported: timer, 100rel, replaces, callerid

15 Session-Expires: 3600;refresher=uas

16 Min-SE: 90

17 Content-Type: application/sdp

18 Content-Length: 475

19
20 v=0

21 o=root 314438619 314438619 IN IP4 172.16.3.247

22 s=call

23 c=IN IP4 172.16.3.247

11

Chapter 2: Telephony and VoIP

24 t=0 0

25 m=audio 63950 RTP/AVP 0 8 9 2 3 18 4 101

26 a=crypto:1 AES_CM_128_HMAC_SHA1_32 inline:nMmx+dq9G8h0lmkuQ9LujqR1XVn37yrv11uGk43N

27 a=rtpmap:0 pcmu/8000

28 a=rtpmap:8 pcma/8000

29 a=rtpmap:9 g722/8000

30 a=rtpmap:2 g726-32/8000

31 a=rtpmap:3 gsm/8000

32 a=rtpmap:18 g729/8000

33 a=rtpmap:4 g723/8000

34 a=rtpmap:101 telephone-event/8000

35 a=fmtp:101 0-16

36 a=ptime:20

37 a=encryption:optional

38 a=sendrecv

Line number 1 is the request line, beginning with the method (INVITE) and the

callee to be contacted. Lines 2 through 18 consist of the SIP headers; a number of these

headers are obligatory (e.g. Via, From, To), others are not (e.g. User-Agent, Min-SE).

Starting with line 20, the message body follows. This body is part of the SDP protocol

communication. Each line de�nes properties about the expected communication, such

as the local RTP end point (line 23) or the expected audio (line 25) codecs (lines 27

through 33).

2.4. Open source technology

Numerous open source software projects provide products for multiple aspects of Internet

telephony. In this section, two enterprise grade products will be introduced which are

commonly deployed in VoIP environments.

2.4.1. Asterisk

Asterisk probably is the best known VoIP software on the market. As a media gateway,

it understands the most important VoIP protocols, such as SIP, H.323, Jingle, ISDN, its

proprietary IAX, and more. Although Asterisk can be used in a pure SIP environment, it

focuses on the mediation of di�erent protocols. Its most commonly used feature probably

is the connection of one or more POTS or ISDN lines with a local SIP environment.

As a dedicated media gateway, Asterisk intercepts not only the SIP tra�c as such,

but also handles the underlying media streams. This has a negative impact on its

performance and scalability.

12

2.4: Open source technology

2.4.2. OpenSER

OpenSER (and its ancestor SIP Express Router, SER) is a dedicated SIP proxy. Based

on its registrar and location services, this modular software system can provide all nec-

essary functionalities for large scale SIP environments. OpenSER or SER are used by

numerous SIP providers, such as the German companies 1&1, Arcor, Freenet and sipgate.

In conventional VoIP environments, every user agent registers itself with a server,

using the REGISTER SIP message method. The server requests and then checks the

agent's username and password and stores its contact information (IP address, port,

...) in its location database. Although location and registrar services may theoretically

be implemented independently, most systems use a uni�ed server process � as does

OpenSER. When a contact request to a speci�c user is received, the server checks its

location database and forwards the incoming message accordingly.

OpenSER provides sophisticated mechanisms to evaluate and modify incoming SIP

messages, while it never touches the transported media streams3. A detailed description

of SER and OpenSER can be found in [16], while the next chapter will describe central

elements of the project that will be of interest for this thesis.

2.4.3. Other products

The open source market provides a large number of server (and client) software for

SIP telephony [6], but none of the other SIP Proxies provides comparable levels of

performance and functionality to SER's and OpenSER's.

The VOCAL server provides additional b2bua support and thus is able to mediate to

H.323 and other protocols, but its development seems to have stagnated.

SipX is � similar to Asterisk � a semi commercial solution. An open source edition is

available for the community from SIPfoundry.org, while commercial products including

maintenance and support may be purchased from the company Pingtel. SipX has been

rapidly growing during the last years and now provides a full featured PBX for SMBs.

According to SIPfoundry's web site, SipX has been deployed in environments with over

5000 users. It includes b2bua features not unlike Asterisk's such as auto attendants for

multiple scenarios and thus plays a completely di�erent role in a SIP environment than

OpenSER does.

3The rtpproxy module provides proxying for RTP streams, which may be necessary for NAT traversal.
The multimedia stream is not modi�ed by the module.

13

Chapter 2: Telephony and VoIP

14

3. OpenSER

To understand the details of the necessary work, it is crucial to understand how OpenSER

works as a piece of software. After a description of the project's purpose, two orthogonal

views of the program will be plotted in this chapter.

3.1. What is OpenSER?

OpenSER is a full featured SIP server. Based on the core proxy functionalities, it

features integrated location and registrar servers for stateful and stateless SIP routing.

Each of these functionalities is provided by a distinct module. Additional modules add

functionalities in multiple areas: Some add core SIP functionality, others provide bridges

to other operative areas such as a Jabber interface for instant messaging. Administrators

are given tools for accounting and security hardening.

The development of OpenSER's ancestor SER was initiated at the Fraunhofer Institut

für o�ene Kommunikationssysteme (FOKUS) in Berlin in 2001 and later continued by

the start-up enterprise iptelorg GmbH. This company was acquired by Tekelec in August

2005. The software was released under the GPL. Due to controversies regarding release

policy and code progress, the project was forked in 2005 by the two core developers

Bogdan-Andrei Iancu and Daniel-Constantin Mierla together with the SER contributor

Elena-Ramona Modroiu. This fork was based on IPTel's SER 0.9.3. In June 2005,

OpenSER 0.9.4 was released.

In June 2006, OpenSER version 1.1.0 was released. This version provided the �rst

basis for the implementation work of this thesis. Shortly before the submission date of

this work, version 1.2.0 was released which contains one part of the code developed for

this thesis. The statistics found below result from studies of the development branch

between the 1.1.1 and the 1.2.0 release.

OpenSER development now is led by the Romanian company Voice System under the

management of the fork's initiators. Voice System earns its revenue with development

15

Chapter 3: OpenSER

and consulting jobs related to OpenSER and VoIP setups. Throughout the work on this

thesis, the author frequently had contact with the OpenSER developer team.

3.2. OpenSER from a user's perspective

Installing OpenSER as a user leads to four distinct entities that are located in the

�le system: The program itself including control scripts, a number of modules, the

con�guration directory and an SQL database schema.

3.2.1. The OpenSER con�guration

OpenSER's behavior is de�ned in a single con�guration �le. Despite the name �con�g-

uration�, its syntax and semantics are very similar to a �program�1. In a rough outline,

the con�guration �le consists of four sections [49]:

Global parameters. This section sets global parameters, such as the hostname, IP

addresses and debugging levels.

Modules. The �loadmodule� statement loads the numerous available OpenSER mod-

ules. The modules developed for this thesis are also loaded here.

Module parameters. Modules can de�ne variables that may be set in the con�guration

�le. This is commonly used e.g. for the database URI to be used by the module, or for

Boolean �ags to adjust the module's behavior.

Routing blocks The routing blocks are the core of the OpenSER con�guration. The

statements in the blocks are similar to a normal program: conditions are checked with

if-statements, functions are called, and their return values are evaluated.

The functions called from these blocks are implemented (and exported for user access)

either by the OpenSER core, or by the loaded modules.

3.2.2. A sample routing block

To convey a sense of how OpenSER's con�guration works, the following (non-functional)

routing block excerpt will brie�y be discussed:

1See section 6.2 on page 56 for a distinction between the terms �con�guration� and �program�

16

3.2: OpenSER from a user's perspective

route{

acc db request("foo", "acc");

if (!uri==myself) {

append hf("P-hint: outbound\r\n");

route(1);

};

if (uri==myself) {

if (method=="REGISTER") { 10

if (!www authorize("sampledomain.de", "subscriber")) {

www challenge("sampledomain.de", "0");

exit;

};

save("location");

exit;

};

if (!lookup("location")) {

sl send reply("404", "Not Found"); 20

exit;

};

append hf("P-hint: usrloc applied\r\n");

set�ag(1);

};

route(1);

}

Line 1 An OpenSER con�guration �le may hold multiple routing blocks. This one

is the top level request routing block, as it is not described by an additional feature.

Routing blocks may be request, failure, reply or branch routing blocks.

Line 2 Every message transiting the system is passed to the accounting subsystem.

The �acc� module contains � among others � a function acc_db_request that stores

information about SIP messages in a database. The �rst parameter is an arbitrary string

that is included in the log; the second parameter indicates the SQL table to store the

information in. The de�nition of the database itself is done in the module parameters

block.

17

Chapter 3: OpenSER

Line 4 Messages that are not destined to this server instance are �agged, and then

directly passed to the routing block number one (not shown here).

Line 10 If the current message is a registration message, its credentials are checked.

If they are absent or invalid, correct credentials are requested and the processing of the

message is interrupted.

If the credentials are valid, the registration is stored in the location database.

Line 19 For all other local messages, the location of the user is looked up in the user

location database. If the user does not exist, an error message is sent back. Other-

wise, routing block number one is entered which eventually delivers the message to the

registered end point.

As seen in this example, there is a wide range of functions available. The accounting

function, header manipulation, user location database including the registration mech-

anism � all of these are part of di�erent modules.

Each of these functions can take between zero and two parameters. Inside the OpenSER

script, these parameters have to be strings (marked by the surrounding quotation marks);

in case of the sl_send_reply function, the numerical value 404 is written as the string

�404�. The reason that other �calls� in the script use a numerical value instead of a

string (such as �setflag� or �route� in the sample above) is that these functions are

core functions rather than module functions.

A list of available modules and their functions is available on the OpenSER web site.

The �exibility and power provided by the con�guration environment and the module

functions enables the user to create a wide range of di�erent functionalities. On the

downside, it is not easy to create correctly working, RFC-compliant scripts. Because

of that, the SER team has started to work on providing template scripts for the most

common use cases. It is likely that most of these scripts will be easily adaptable for use

with OpenSER.

3.2.3. Database bindings

OpenSER features the following relational database engine implementations:

18

3.2: OpenSER from a user's perspective

mysql is probably the most widely used engine. Although MySQL lacks features crucial

in many enterprise sized relational database systems, it is extremely fast and has proven

its stability in many contexts.

postgres provides an interface to the open source database management system Post-

greSQL (often referred to by its old name Postgres). PostgreSQL provides more func-

tionality than MySQL, but on the other hand is not as easy to maintain and to use.

unixodbc implements a binding to the ODBC interface of unixODBC, a project aim-

ing to provide a technology-independent database layer for non-windows systems[5].

unixODBC supports numerous enterprise scale as well as light weight database back-

ends.

�atstore is a slim pseudo-database back-end that only supports write operations. Data

are written to a human-readable and computer-parsable (character separated values,

CSV) text �le. Developed solely for use with the accounting module acc, it might also

be used with other write-only modules such as siptrace.

dbtext provides another back-end for text �les. Unlike �atstore, it does not only

support write operations, but also queries, updates and deletes. It is intended for test

environments and small installations where full-featured SQL databases are not available.

Anticipating the categorization of data in the next chapter, non-relational data access

is available for � among others � RADIUS servers and the ENUM DNS zone.

3.2.4. Pseudo variables and AVPs

In OpenSER's con�guration, so-called pseudo variables can help setting up more complex

environments. These pseudo variables may be used in the con�guration script and

contain information about the message that is currently processed: the variable $ru, for

example, holds the recipient URI of the message, while $Ri represents the IP address

the message was received on. Additionally to the core pseudo variables, modules may

export their own.

A full list of all available pseudo variables is available in the OpenSER documentation.

19

Chapter 3: OpenSER

In the con�guration �le, e.g. equivalence of these pseudo variables with static data

or other variables may be checked to decide on further behavior. One could imagine

checking the source IP address $si to blacklist a certain user:

if ($si == "127.0.0.1") {

sl send reply("401", "No local calls.");

exit;

}

Additionally to the con�guration statements, numerous modules provide functions

that �understand� pseudo variables as well. One example of these functions is the xlog()

function provided by the xlog module. This function can be used to log messages that

include information about the currently processed SIP message.

Closely related to the pseudo variables (in fact being a special type of pseudo variables)

are the attribute/value pairs, AVPs. These variables may be stored in or fetched from a

database, or from a RADIUS server through the avpops and avp_radius modules. An

interesting example of using AVPs can be found in OpenSER's RADIUS documentation

[39]. In this sample, the RADIUS entries include AVPs containing a start and end time

during which users may initiate calls.

Pseudo variables and AVPs are crucial instruments for complex OpenSER con�gura-

tions. In simple environments, their usage is rarely necessary.

3.2.5. In a nutshell...

OpenSER is an extremely �exible and powerful SIP proxy. By its �exible and expressive

con�guration language, the system can be adapted to a wide variety of environments.

Users have installed OpenSER instances in environments ranging from single user to

hundreds of thousands of users. The sample con�gurations that are available in the

package and on various Internet sites help to overcome common problems. The con-

�guration wizard o�ered by sipwise.com can provide con�guration templates for many

scenarios.

As a drawback, the con�guration of an OpenSER server can reach a complexity that is

no longer easy to handle. An inexpert user can easily miscon�gure the system, rendering

it unusable, or � even worse � opening security holes.

Still, the features o�ered by OpenSER make it a powerful tool for a large range of

SIP environments.

20

3.3: OpenSER from a code perspective

In February 2007, network equipper Cisco systems chose OpenSER as their SIP proxy

choice for the Cisco Service Node for Linksys One.

3.3. OpenSER from a code perspective

OpenSER is developed in C. A main focus of the implementation was performance; not

only was this the main reason for the choice of the language C, but it is also the primary

reason for some design aspects in the program. Missing inheritance and class concepts in

the programming language resulted in rather low level and not well abstracted structures

in the OpenSER source � for the sake of performance. The �non-object-oriented feeling�

of the underlying code is passed on to the user by means of the con�guration �le.

OpenSER consists of a number of distinct units that interact through de�ned (al-

though unfortunately not well documented) interfaces. These units, re�ected by indi-

vidual subdirectories in the source tree, are:

1. OpenSER Core

2. SIP message parser

3. Memory Management

4. Database interface

5. Core extension for TLS support

6. Management interface

7. OpenSER modules

While listed separately, points two through six are tightly integrated into the core and

cannot be separated from other parts of the code. Most of OpenSER's functionality is

located in the modules, however. The core and its components consist of approximately

67'000 lines of C code, while the modules total up to 157'000 lines, currently distributed

into almost 70 separate modules2.

2These numbers were evaluated in January 2007 and change rapidly

21

Chapter 3: OpenSER

3.3.1. Types of modules

The possible functionality of OpenSER modules can be categorized into three groups:

Providing functions exported for user access, implementation of the database API, and

de�nition of an API for access from other modules. Additionally, modules focused on

all kinds of functionality can o�er user access through the management interface.

The largest share of modules is responsible for the creation and extension of features,

ranging from di�erent routing strategies over the access of external data to the rewriting

of SIP messages. This is accomplished by passing control to the core con�guration �le,

where the user can �call� functions exported by the modules. Only half a dozen modules

explicitly provide an API for usage by other modules.

Although structurally identical, the �ve di�erent database modules provide a com-

pletely di�erent functionality. Their functions are not marked for usage in any type of

routing de�nition and thus cannot be accessed from within the con�guration �le.

3.3.2. Export structure

All modules contain a nested C structure module_exports, de�ned in sr_module.h:

struct module exports{

char* name; /* null terminated module name */

unsigned int dl�ags; /* �ags for dlopen */

cmd export t* cmds; /* null terminated array of the exported

commands */

param export t* params; /* null terminated array of the exported

module parameters */

stat export t* stats; /* null terminated array of the exported 10

module statistics */

mi export t* mi cmds; /* null terminated array of the exported

MI functions */

item export t* items; /* null terminated array of the exported

module items (pseudo-variables) */

init function init f; /* Initialization function */

response function response f; /* function used for responses, 20

returns yes or no; can be null */

22

3.3: OpenSER from a code perspective

destroy function destroy f; /* function called when the module should

be �destroyed�, e.g: on openser exit */

child init function init child f;/* function called by all processes

after the fork */

};

The most important components of this structure are the �cmds� and �params� vari-

ables. cmds refers to an array of structures; each of these structures contains the de�-

nition of a function that is accessible from other components (other modules, through

the database API, or directly for user access). params holds the names and types of the

module parameters that can be set from within the con�guration �le.

During the initialization of a module, the export structure is loaded by the core and

can later be referenced from the script or by other modules. This query is accomplished

by a set of core functions that return pointers to the module functions, parameters and

variables.

3.3.3. Parameter �xup

As described above, function references in the con�guration �le always use strings as

parameters. As some module functions in fact operate on di�erent types of data �

such as simple integers, deeply nested structures, or arrays of pointers, the function

call is preceded by a parameter conversion. The export structure cmd_export_t may

contain pointers to so-called �xup functions for every listed function. Static strings in

the con�guration �le are converted to an arbitrary data type (C type void *) upon

initialization; at runtime, the data transformation does not have to be repeated.

Samples of possible �xups are:

• Conversion of a string to an integer (e.g. reply codes)

• Conversion of a string containing variable names to an array of pointers to the

string segments plus pointers to functions that return the values for the variable

names (e.g. the pseudo-variable printing of the �xlog� module)

• Conversion of raw C strings to OpenSER's �str� type (a character pointer plus a

length)

• The presence server module (�pa�) registers parameters in its internal database

upon parameter �xup. The �xed data type is a linked list.

23

Chapter 3: OpenSER

There are two main reasons for the distinction between the parameter preprocessing

and the function call itself. Obviously, the preprocessing largely increases the execution

speed and thus the message throughput of the system. Secondly, modules that call

other modules' functions can prepare �sensible� parameter structures themselves instead

of constructing a string representation.

As a drawback, two problems arise due to the �xup separation: Firstly, the C type

system is circumvented � all parameters are cast to void * variables. While casting

arbitrary pointers to void pointers is still more or less sensible, casting integers to void *

deeply hurts the type concept. Explicit type casts are usually regarded as a weakness in

modern programming environments. Additionally, the system in its current state can do

arbitrary operations during the �xup (this results in memory space allocation in many

cases). There is no abstraction of this operation, so that other calling modules possibly

need to replicate code if they want to pass parameters of the correct type. Furthermore,

there is no encapsulated method to undo the �xup. If � for whatever reason � a module

calls a �xup function for creating arguments, the result's structure needs to be known

in that module so that it can revert the operations (e.g. freeing the right memory

structures).

3.3.4. In a nutshell...

The priorities of software engineering have changed during the last decades. While ef-

�ciency was a central design aspect in the beginning of computing, its meaning has

signi�cantly decreased over time. OpenSER (and its ancestor SER), however, was de-

signed to handle carrier grade VoIP tra�c, so e�ciency was again a big issue. The

design goals derived from this resulted in a number of facts that make OpenSER's code

a little di�cult to handle in some aspects.

From the software engineering point of view, C is a deprecated programming language.

More modern languages provide better abstraction methods and object orientation. The

latter could have helped with classes for SIP messages and URIs, or with classes model-

ing module export structures. On the other hand, the direct access to low level system

functionality greatly increases the system's processing speed. A comparison of di�erent

memory handling methods � particularly SER's pkg_malloc/pkg_free versus the stan-

dard malloc/free calls [29] � shows the advantages of low level programming in the

context of a SIP server which are di�cult to maintain with more abstract programming.

24

3.3: OpenSER from a code perspective

Comparing other open source projects, OpenSER's source code documentation is lim-

ited. Numerous central components are not well commented on. A core API reference

does not exist.

Despite these negative points, OpenSER features an open design. Prototype modules

could be written fairly simple. Adding features to the core was not a problem either, as

the data structures in use are abstracted well enough to allow simple modi�cations.

25

Chapter 3: OpenSER

26

4. Data handling

The initial concept for this thesis originated from the idea of integrating software systems

that use di�erent methods to store and manage data. In this chapter, this term will be

discussed and a number of technologies that are available for data management will be

examined.

The �rst part will describe di�erent types of data, while the second part explains some

backend technologies that are commonly used for di�erent aspects of data handling.

4.1. About data and information

Everybody has an intuitive understanding of the term �data�. However, it is not so

easy to �nd a formal de�nition. Computer scientists use the term for arbitrary series of

bits, bytes or words. Data are the object on which programs and algorithms work; only

programs give a meaning to data.

Computers can store, receive, send and modify data. Only by doing so, they can solve

the problems they were created for.

4.1.1. Distinguishing data and information

Closely related to the term �data� is the term �information�. In many contexts, these

words are used synonymously, and so will they be used in large parts of this work. Still,

there is an important di�erence between the two of them [9]. Information is a piece of

data that has a �meaning�, while data do not have to. While a series of 16 bits will

be identical data on two machines, the information they contain may be di�erent for a

little and a big endian machine. A series of eight digits is a piece of data, but read as a

person's birthday, it becomes information.

The systems that will be connected in this thesis do not only need access to the other

entity's data, but they need to receive the same information as the other part does. In

chapter 6, it will become clear that the problem is not a connection to a data storage, but

that it will be much more di�cult to create information from the data it may contain.

27

Chapter 4: Data handling

4.1.2. Types of information

A VoIP system needs to handle di�erent types of information: Besides the obvious tele-

phony data (SIP and POTS/ISDN tra�c), there are a number of meta data types: Static

and dynamic con�guration data, transitional data (accounting, current registrations and

calls, ...) and authentication/authorization data.

Di�erences in content and structure of these meta data categories are responsible for

the di�culties of system integration in current VoIP software, as will later be described.

4.1.2.1. Con�guration data

As described in [52], con�guration of software systems is often twofold: a static con�g-

uration de�nes an environment for the software system to work in, whereas a dynamic

con�guration creates a tier with dynamically changing environmental circumstances. In

the aforementioned paper, which discusses QoS aspects of a middleware system, static

con�guration contains information about the existing resources. The assignment of these

resources is done dynamically.

Another example of the duality of static and dynamic con�guration can be found in an

MTA: static information � IP addresses and network environment or smarthost setups

� stand in contrast to the dynamic aliases tables or domain responsibilities.

The dividing line between these two types of con�guration data is often blurred; static

con�guration may sometimes be reloaded during a system's runtime, while aliases tables

are frequently con�gured via regular con�guration �les.

A planned VoIP system ought to be able to handle a number of dynamic data, such

as user databases, routing information or voice box setup. On the other hand, the

con�guration of how to react to certain dynamic con�guration statements may be done

statically. A user ought to be able to turn his voice box on or o� dynamically, the voice

box con�guration itself may be static.

Con�guration data are �owing into the system.

4.1.2.2. Transitional data

Software products commonly need a way to persistently store internal data. Although

the underlying technologies may possibly be the same as for con�guration data1, the

1OpenSER currently uses SQL databases for both con�guration and transitional data, as will later
become visible.

28

4.2: Technologies

semantics within the system di�er largely. In terms of the MTA example, such a system

will need a space to handle the mails that pass the system.

Similarly, the evolving VoIP system needs to store information about connected user

agents or active calls.

Although transitional data usually are only handled in the software system itself, it

is sometimes desirable to retrieve these data from the system. An MTA should have an

interface to query the queue of currently waiting mails.

Transitional data �ows within the system.

4.1.2.3. Authentication and authorization

It was shown that user databases are dynamic con�guration data. At a �rst glance,

authentication data seems to be equivalent to the user database. This is true on the

syntactical level only, however. While a software system needs full access to the user

database to retrieve all available information, access to authentication data should be

restricted as far as possible for security reasons. As long as a software system knows

that a user is authenticated, it is unnecessary for it to know how the user authenticated

himself.

In practice, a VoIP system should not be able to retrieve a user's password while

checking his authentication credentials. A strict distinction between the authentication

data and the authentication itself is desirable. The user credentials can reside on a

highly secured machine.

So-called �Triple-A systems� such as RADIUS provide an interface for this task.

Authentication data are external data that should be queried, but should never need

to enter the system.

4.2. Technologies

Numerous alternative technologies exist to provide functionality for data handling. On

the �rst glance, their objectives may look similar, but in fact the technologies are quite

distinct. While some may be deployed in a wide range of purposes, others are extremely

specialized.

29

Chapter 4: Data handling

4.2.1. The simple life: plain text

The most simple way of managing data is the usage of plain text �les. No external

constraints restrict their usage; their format is commonly only de�ned by the application

they are used in2. For text �les, there often is a large di�erence between data and

information, as the knowledge that can be gathered from them depends on the context

that is de�ned by their applications.

While text �les re�ect human methods of working, computers need to parse text

�les to receive information. This process can be quite expensive, depending on the �le

structure. Therefore, text �les are only a good choice for small amounts of data at the

human-computer interface.

4.2.2. Relational databases and SQL

As the amounts of data and the constraints on correct and e�cient processing of them

grew in the early days of the computer age, the need for dedicated systems for these

tasks arose. In the 1960s, the concept of database management systems (DBMS) as an

additional software layer was born and re�ned and formalized in the 1970s, eventually

forming the relational database model. The SQL (Structured Query Language) de�nes

a standardized way of storing, modifying and requesting data in relational DBMS.

A database management system handles data stored in a database; their sum is re-

ferred to as a database system.

In contrast to earlier models, the relational database model re�ects the formalized

mathematical models of relational calculus and relational algebra [30]. Data are stored

in sets of relations. More practically, the model presents a set of tables with strictly

de�ned names and types of columns. The set of these de�nitions is called a database

schema.

Commercial as well as free software products today implement RDBMS. Due to the

fact that they have evolved over a long time, they are among the most mature, most

e�cient and best understood software systems existent in computing. The relational

model is fairly easy to understand, and the environments created by its implementations

result in valuable, well-established programming interfaces.

Still, the relational database model implies a number of shortcomings that modern

RDBMS still su�er from. The systems store data that do not have implied semantics.

2Specialized text �le formats � such as Character Separated Values (CSV) �les, and even XML � do
exist.

30

4.2: Technologies

Thus, the data mature to information only at the time the processing application applies

its level of semantics. Di�erent applications working on the same database system may

or may not be �compatible� with each other in the sense of understanding each other's

implied information.

Despite all criticism, nowadays the relational model drives all considerable database

management systems on the market. Applications in almost every aspect of computing

use relational databases as underlying data storages.

4.2.3. Directory services: LDAP

The Lightweight Directory Access Protocol (LDAP, see recent work in [42]) provides

a more specialized technology of data storage. While relational databases are �exible

enough to store almost arbitrary types of information, directory services are dedicated to

store information about users and resources in computer networks. The LDAP protocol

provides today's standard access protocol for directory services.

A directory hierarchically stores objects that belong to a set of classes. Standardized

object classes can be complemented by private de�nitions. An object can belong to

multiple classes. Each class de�nes attributes the object can or must have. The seman-

tics of an object's attribute is implied by its de�nition in the schema. Thus, an LDAP

directory can directly contain information, rather than raw data.

A common schema used to describe users in a network is the so-called inetOrgPerson

class which includes attribute de�nitions for e.g. telephone numbers, e-mail addresses,

or room numbers. More technically related, the posixAccount stores information about

user accounts in Unix environments, adding attributes for e.g. user and group IDs, for

home directories or for user's shells.

In many organizations, objects describing users belong to both the inetOrgPerson as

well as the posixAccount class.

The ITU-T recommendation H.350, also depicted in RFC 3944 [26], standardizes

LDAP schemata that may be used in VoIP environments. These classes re�ect user

agents (telephones) however, e.g. allowing a SIP registrar to store registry information

in the LDAP. Classes that may be useful for user identity mapping are not provided.

LDAP directories solve a set of rather clearly cut requirements. The fact that they are

not quite as fast as relational databases is o�set by the advantage of managing pieces of

information instead of raw data.

31

Chapter 4: Data handling

4.2.4. Authentication services

As described, a directory such as an LDAP service stores information about users in

a computer network. The posixAccount schema includes an attribute to store users'

passwords. Passwords3 are used to verify a user's identity. This is necessary to enforce

a permission policy for an o�ered service.

Although it is su�cient for authentication mechanisms of modern operating systems

� including Unix and Windows � to store encrypted (or, in fact, hashed) passwords,

this is not su�cient for numerous other authentication mechanisms. SIP, for example,

demands digest authentication, a challenge-response authentication mechanism already

commonly used for HTTP.

Challenge-response mechanisms require the server to store the plain text password,

or a password equivalent token [37]. In case of the digest mechanism, the (shared)

key that is used by both sides to encrypt the nonces is called �HA1� and is an MD5

hash of the username, the authentication realm, and the password. While the original

plain password does not have to be stored on the server, access to the service can be

accomplished with the HA1 value alone. The following graphic shall visualize the objects

concerned during authentication.

Coming back to the topic of OpenSER, the policy enforcement point is the OpenSER

core; the authentication protocol handler may be one of the available authentication

modules, auth_db, auth_radius or auth_diameter. While auth_db also includes the

authentication service, auth_radius and auth_diameter rely on a distinct entity. The

credentials storage may e.g. be auth_db's relational database, or an LDAP directory

back-end for RADIUS and DIAMETER.

The steps in the bottom half of the graphic, describing the authorization process, are

similar, except that this path does not transport any secrets, but only information about

the policy to be enforced.

3While other tokens � such as biometric properties or certi�cates � may be used for authentication,
this discussion will be restricted to passwords

32

4.2: Technologies

When the authentication service is integrated with the policy enforcement point, this

means that the executed program containing these instances needs access to the plain

text password, which in many cases is not desirable. Thus, a dedicated authentica-

tion service can be used to split these entities; the authentication service may well be

integrated with the credentials storage.

Reverting to the real world example of OpenSER, it may be common to run the VoIP

server on one machine, and a RADIUS server as well as its back-end, e.g. an LDAP

directory, on another.

4.2.4.1. RADIUS and DIAMETER

The growth of the Internet was closely related to the availability of public dial-in ser-

vices o�ered by Internet service providers. Their demand for a solution to the prob-

lem described above led to the development of services that provide functionality for

authentication, authorization and accounting, forming a group of AAA (�Triple-A�) ser-

vices. The de-facto standard AAA protocol today is the Remote Authentication Dial-In

User Service, or RADIUS [45]. A RADIUS server takes on the job of checking the

username/password pair with data stored in its con�guration (or data back-end). Addi-

tionally, it provides functionality for authorization and accounting, as these three topics

are closely related in the context of dial-in services.

Remote Access Service (RAS) nodes pass incoming authentication data to the RA-

DIUS server, which can then reply with a simple (boolean) �successful� or �unsuccessful�

answer. Similarly, the question whether a (authenticated) user belongs to a group with

su�cient rights for a certain action can be answered with yes or no. RADIUS pro-

vides additional functionality for accounting, and storing/requesting information about

properties of a user, such as the maximum available bandwidths.

While originally developed for dial in services, the RADIUS protocol has proven to

be �exible enough to provide AAA services for other tasks as well. In larger networks,

wireless network access using the WPA encryption protocol commonly is implemented

with a RADIUS server for user authentication. Multiple VoIP server implementations

(including OpenSER) can use RADIUS based authentication. The system can also be

used for VPN authentication.

The RADIUS protocol itself is a UDP based Internet protocol. Various commercial

and free implementations exist. In the open source market, the most important ones are

freeRADIUS and openRADIUS. Available back-ends in both implementations include

plain text con�guration, SQL databases and LDAP directories.

33

Chapter 4: Data handling

DIAMETER is RADIUS' proposed successor, but has not yet gained a lot of real-world

attention. The core concepts of RADIUS are adopted unchanged.

4.2.4.2. Kerberos

With the technologies described above, a user needs to authenticate � and thus enter

a password � with every service he wants to use. The Kerberos protocol uses so called

tickets to remove this restriction. When logging in (or registering with the Kerberos

realm), a user's credentials are checked, and (in case of successful authentication) he is

given a �Ticket granting ticket� (TGT). When requesting a service, an additional ticket

is requested (and granted, as long as the user is authorized for the service). This ticket

is used to authenticate with the particular service.

While RADIUS is completely implemented on the server side, Kerberos needs software

support on the client side to handle the Kerberos tickets. Due to this, every communi-

cation protocol needs to be speci�ed for usage with Kerberos.

The SIP protocol does not include a Kerberos speci�cation (although its integration

would be possible). Thus, no known SIP proxy or user agent implementation features

Kerberos ticket handling.

4.2.5. ENUM

ENUM stands for tElephone NUmber Mapping. The latest version of the ENUM stan-

dard is speci�ed in RFC 3761 [15]. Its primary intent is to provide a meaning of convert-

ing telephone numbers into URLs � which in turn typically are SIP addresses, but may as

well be be e-mail addresses or conventional �HTTP� URLs. The records in the ENUM

domain zone are NAPTR records [38]; this adds features for evaluating the returned

records with regular expressions.

ENUM is based on the conventional and long established DNS service [40, 41]. A dis-

tinct top level domain, e164.arpa, was created that hosts the ENUM records4. The tele-

phone number +49-761-203-1234 translates to ENUM domain name 4.3.2.1.3.0.2.1.6.7.-

9.4.e164.arpa: the canonical phone number � beginning with the international pre�x � is

reversed, the digits are separated with the domain-delimiter �.�, and the ENUM domain

e164.arpa is appended.

The above DNS address might resolve in the following way:

4Other domains may be used for ENUM entries, too; the domain .e164.arpa is globally standardized.
Other registration organizations try to establish parallel ENUM domains.

34

4.2: Technologies

1 bastian@hostname:~> host -t NAPTR 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa

2 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa has NAPTR record 1 10 "u" "E2U+tel" "!^.*$!tel:+497612031234!" .

3 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa has NAPTR record 2 10 "u" "E2U+tel" "!^.*$!tel:+491721234567!" .

4 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa has NAPTR record 3 10 "u" "E2U+sip" "!^.*$!sip:1234567@sipgate.de!" .

5 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa has NAPTR record 4 10 "u" "E2U+mailto" "!^.*$!mailto:me@uni-freiburg.de!" .

6 4.3.2.1.3.0.2.1.6.7.9.4.e164.arpa has NAPTR record 5 10 "u" "E2U+http" "!^.*$!http://www.uni-freiburg.de/~me/!" .

An ENUM-aware agent (server or client) is able to request di�erent contact methods

that are associated with that telephone number. In this case, a caller might contact the

callee via a POTS or mobile telephone number, a SIP address, by e-mail or at via web

site.

In contrast to the other technologies described above, ENUM describes a special

schema of data in the Domain Name Service. While di�erent SQL-based software

systems usually will be incompatible with using each other's data (as their schemata

di�er), every ENUM-enabled device or software will be able to use the data provided in

the e164.arpa domain.

4.2.5.1. Status quo

After being standardized for some years now, ENUM has been put into operation by Ger-

man DENIC in January 2006 [1]. DENIC is responsible for the subdomain 9.4.e164.arpa

(which translates into the international telephone number pre�x +49). Subdomains �

such as 3.0.2.1.6.7.9.4.e164.arpa for the university of Freiburg � can now be registered

via regular registries.

On a global perspective, ENUM trials have been initiated in most parts of the world.

In many European countries, ENUM registrars have started their regular operation.

ENUM is ready to use for end users and widely available through regular domain

registration processes. The technology in software systems (servers and soft phones) as

well as in hardware devices has been in operation for some time. On the other hand, the

business models of many well-known SIP providers have the e�ect that users � ENUM-

enabled or not � cannot directly contact each other, as the providers earn money by

routing calls to the POTS and vice versa. Routing calls through SIP that were initiated

with a conventional phone number would not create any revenue. Due to these arti�cial

hurdles, the importance of ENUM for end users is still restricted.

35

Chapter 4: Data handling

36

Part II.

Analysis and speci�cation

37

5. Requirements analysis

The advantages of a VoIP environment over a conventional telephony network seem

obvious: reduction of telephony and administrative costs as well as the increase of pro-

ductivity provided by new features. On closer consideration, the desired tasks and

features of a VoIP system have to be determined a lot more detailed, however.

The object of this diploma thesis is the integration of VoIP products into a homoge-

neous system. Integration will mean that there have to be common data paths between

the interfaces of the subsystems. The discussion of data structures will occupy an im-

portant place in this chapter.

5.1. Use case analysis

It is necessary to outline the use cases in a VoIP system. Special consideration will be

given to the types of data and information handled by the system during the processing

of the tasks.

Derived from the feature lists of telephone carriers ([54, 48]) and taken from literature

([22, pp. 36�], [13, pp. 288�], [27, pp. 165�], [28]), typical use cases can be found;

for most cases, common sense is su�cient, as we have a good expectation of what a

telephony network should do. The use cases of a VoIP system that will be examined

are:

• Incoming VoIP/POTS call

• Outgoing VoIP/POTS/�auto� call

• Call transfer

• Call de�ection

• Conference calls (internal, external, mixed)

• SIP registration (attaching a phone) and authentication

39

Chapter 5: Requirements analysis

• User and authorization/permission management

• Personal self-administration

• Accounting

• ACD, IVR, Call hunt groups [8]

Most of these use cases are fairly obvious; their description can therefore be short.

Attention is mainly given to the data handled within the respective use cases.

Thus, the types of data found during this analysis will later be categorized and at-

tributed to entities in the OpenSER software.

40

5.1: Use case analysis

5.1.1. Use case: Incoming phone call

Participating Agents: Caller, Callee

Description: A caller reaches the VoIP system via POTS or VoIP.

The following cases are possible:

• Callee answers phone. The conversation must be

set up.

• Callee has set �Do not disturb� mode. Caller is to

receive busy signal.

• Callee is already engaged. Depending on setup,

caller is to receive a busy signal, or the callee is to

be signaled �call waiting�.

• Callee does not answer phone. The call is to be

dispatched to a voice mail system after a number

of rings.

• Callee does not exist. Caller is to be signaled a

�user unknown� message.

The phone device (softphone or hardware) of the called

user signals the incoming call. If the caller's ID is trans-

mitted, it ought to be displayed.

Data in use:

• Identity information: who is the receiving user?

• Registration/location information: Where is the

receiving user?

• Status information: is user engaged?

• Voice box setup

• Private/public address books: display of caller

identity

41

Chapter 5: Requirements analysis

5.1.2. Use case: Outgoing phone call

Participating Agents: Caller, Callee

Description: Caller uses one of the following methods to initiate a

call:

1. Dials a phone number on his phone

2. Dials a SIP address on his phone

3. Uses a web interface or dedicated software to dial

a number/address (�Click to dial�)

Caller needs to have access to a system wide address

book. The system shall autonomously choose a route to

the callee depending on a number of factors. Possible

outgoing paths include POTS/mobile phone and VoIP.

Data in use:

• Public/private address books

• Linking information between address/phone num-

ber and a user

• Location information of users (�how do I reach user

X?�)

• Authorization (May caller initiate call to this ad-

dress/number?)

• Accounting

42

5.1: Use case analysis

5.1.3. Use case: Call transfer (External: VoIP/POTS, internal:

VoIP)

Participating Agents: Original conversation partners P1 and P2, new conver-

sation partner P3

Description: P1 and P2 have a conversation. P1 initiates a call trans-

fer to P3. An incoming call is signaled to P3.

Although di�erent cases can be distinguished, this use

case behaves very similar to �outgoing call�.

Data in use: See �outgoing call�.

5.1.4. Use case: Call de�ection

Participating Agents: User

Description: User con�gures VoIP system to route incoming calls to

a third number/address.

This may be done through a web interface or via the

phone.

Data in use:

• Aliases database

• Authorization data

43

Chapter 5: Requirements analysis

5.1.5. Use case: conference calls (internal, external, mixed)

Participating Agents: Conference administrator, multiple users

Description: Administrator creates a �conference room� through a

dedicated interface, e.g. a web site. A phone num-

ber/SIP address is assigned to this room and a secret

(PIN) may optionally be set. Additionally, access to the

conference room may be restricted by ACLs (incoming

address/number).

Users may join the conference by dialing its number/ad-

dress and entering the PIN.

Data in use:

• Conference room database

• Authorization data

• Aliases database

• Address book

5.1.6. Use case: SIP registration (attaching a phone) and

authentication

Participating Agents: User

Description: User attaches a phone (hardware, softphone) to the

VoIP network (LAN, VLAN, ...) and con�gures the de-

vice to use the VoIP server.

System checks user credentials and stores his contact

information.

Data in use:

• User database

• Authentication data

• Location database

44

5.1: Use case analysis

5.1.7. Use case: user and authorization/permission management

Participating Agents: Administrator

Description: The administrator can

• create user accounts

• set/change user passwords

• set permissions (e.g.: POTS calls, long distance

calls, international calls, conference rooms), pos-

sibly in conjunction with time intervals (e.g.: no

calls on Sundays, no calls outside of o�ce hours)

• set up voice mail for users

Data in use:

• User database

• Authentication data

• Authorization data

• Voice mail setup

45

Chapter 5: Requirements analysis

5.1.8. Use case: personal self-administration

Participating Agents: User

Description: A user may set a number of personal information stored

about his identity, e.g.:

• Real name and similar information (room number,

...)

• Aliases (possibly, if permission is given)

• Voice mail setup, including announcements

• Call de�ection (see use case 5.1.4)

• Status information (Presence, Do not dis-

turb/DND)

• User password

Data in use:

• Address book

• Aliases database

• Voice mail con�guration

• User and authentication databases

• Status information

46

5.2: Categorizing data

5.1.9. Use case: Accounting

Participating Agents: Calling user, accounting manager

Description: User initiates and receives calls to/from other users. The

VoIP system creates records for the calls which may later

be evaluated by the accounting manager (call source and

destination, used route, time and duration of call).

Data in use:

• Accounting database

• User database

5.1.10. Use case: ACD, IVR1, Call hunt groups

Participating Agents: Callers, administrator, dispatchers

Description: The call center administrator can create user groups that

receive incoming calls in call hunt groups and ACD se-

tups. It is desirable that this setup automatically works

in parallel with other organizational groupings.

IVR depends on a heavily customized setup. Connec-

tions between user input and actions based thereon are

to be con�gurable from within an integrated front-end.

Data in use:

• Groups of users

• Alias database

• User con�gurable meta databases

5.2. Categorizing data

After examining the data in use while handling common use cases in the last section and

investigating the categories of data in section 4.1.2, a matrix of memberships is needed:

1The possibilities provided by Interactive Voice Response are arbitrarily large. The methods of user
input, the methods of processing the input and the meaning for the call center are varying. Although
the work of this thesis should provide features that help for a good IVR technology integration, IVR
itself will not be discussed any further.

47

Chapter 5: Requirements analysis

Data category Data types

Con�guration

• Identity information

• Voice box

• Address book(s)

• User database

• Aliases database

• Conference room database

• User groups

• Meta databases

Transitional

• Registration/location information

• Status information (Engaged, DnD, ...)

• Accounting

Auth.

• Permission/authorization database

• Authentication database

5.3. Data handling in OpenSER

As detailed in chapter 4, there are commonly deployed technologies for handling the

data examined in this chapter. These technologies now have to be made available for

usage with OpenSER.

Not all of the data categories de�ned above have a counterpart in OpenSER; some

of the topics they belong to are not a property of a SIP environment, but are related

to higher level functionalities in telephony networks. The basic technical aspects of

48

5.3: Data handling in OpenSER

OpenSER have been elaborated on in the last chapter. The data categories can now be

related to OpenSER's technology that handles them.

Data Functionality/OpenSER module

Identity information The term �identity information� is not de�ned well. It refers to

the subscriber database used by the authentication modules

as well as to the location and alias databases.

See below for discussions of these databases.

The Caller ID displayed on receiving devices is normally set

by the calling device; although its modi�cation is possible,

there is no standard action for this task.

Voice box OpenSER is a SIP-only server and as such does not handle

voice mail. Commonly deployed con�gurations use call fork-

ing mechanisms to forward calls to answering machine appli-

cations.

One possible way to implement this forking is to use a process

similar to aliasing.

Address book(s) Although address books and their querying are a feature of

VoIP clients (hard or soft phones) rather than a server func-

tion, there are some possible points of interaction: modi�-

cation of Caller ID, speed dial functions or user aliasing, to

name only a few.

Speed dialing is supported via the speeddialmodule, aliasing

is implemented in alias_db.

The modi�cation of caller IDs is a topic too complex to discuss

here; so-called RPID headers can be appended. Modi�cation

of the From header is supported.

User database The list of subscribers is necessary for user authentication.

OpenSER currently supports relational databases, RADIUS

and DIAMETER.

Aliases database Aliases may be evaluated through OpenSER's alias_dbmod-

ule that depends on a relational database.

49

Chapter 5: Requirements analysis

Data Functionality/OpenSER module

Conference room

database

Conference rooms are features that are implemented in back-

to-back user agents (b2bua). OpenSER can only provide SIP-

based functionality for the topic, e.g. access control.

A sample con�guration in OpenSER's documentation de-

scribes the use of AVPs for conference room access con-

trol. This sample uses the avpops module with a relational

database connection.

User groups OpenSER supports user groups through the group and

group_radius modules for using relational databases or a

RADIUS back-end. Call branching provides the means for

call hunting groups.

Meta databases OpenSER does not have integrated support for arbitrary user-

con�gurable data. However, the underlying relational schema

may be extended, as long as these modi�cations do not inter-

fere with OpenSER's modules.

Registration/location

information

The location database in OpenSER, implemented in the

usrloc module, provides sophisticated caching techniques. It

is based on the relational database model.

Information about user location is also given through ENUM

entries. The ENUM domain zone may be queried by the func-

tions of the enum module.

Status information OpenSER's latest release incorporates a presence server as

well as a user agent (presence and pua modules). Both rely

on relational databases.

Accounting When SIP-only telephony is used, accounting is not a simple

subject; after establishing a SIP connection, the extent of

RTP tra�c is not ultimately known. SIP-only accounting

thus is not reliable.

OpenSER has a sophisticated accmodule that tries to circum-

vent a number of problems. It can use relational databases, a

syslog service, or RADIUS servers for logging.

A database engine �flatstore� is provided to log to raw text

�les.

50

5.3: Data handling in OpenSER

Data Functionality/OpenSER module

Permission/

authorization

database

OpenSER's permissions module can be used to deter-

mine if a call has appropriate permission to be established

[56]. The decision is based on text �les similar to Unix

hosts.allow/hosts.deny �les. A relational database can be

used for internal caching.

Permission granting based on dynamic limits (e.g. time, call

rate, ...) is not supported.

Authentication

database

Authentication is supported by OpenSER's auth, auth_db,

auth_radius and auth_diameter modules.

The �rst provides basic authentication functionality; the oth-

ers provide implementations for relational databases, RA-

DIUS and DIAMETER services.

The software system uses relational databases as sources and destinations of most

data read/write operations. Where appropriate, the �Triple-A systems� RADIUS and

DIAMETER are supported.

5.3.1. Data paths in OpenSER

OpenSER's module structure results in a number of internal paths which chunks of data

need to transit. These data paths connect the interfaces of the system modules. The

external interfaces described in the last section use relational data sources and sinks.

More abstract, these data paths in OpenSER can be identi�ed:

• The core exchanges data with its modules. The primary data structures are C

structs of type struct sip_msg.

• As mentioned before, modules exchange data with the database modules (al-

though OpenSER does not use the term, similar entities are commonly called

�drivers�) through the DB API. Multiple underlying C structs (struct db_*) are

used; dedicated encapsulating container structures do not exist.

• The database modules exchange data with their underlying technology, speci�c

DBMS. As di�erent database management systems implement (at least) slightly

di�ering APIs, they do not feature common data structures.

51

Chapter 5: Requirements analysis

• Modules may exchange data with other modules. This may be done by extract-

ing regularly exported functions, or through APIs de�ned by the serving modules.

In the �rst case, the struct sip_msg is also used; in the latter case, there is

no common data structure, as the functions may be accessed natively with their

respective signature.

• OpenSER provides external access through the Message Interface (MI) for core

and module functionality. Two modules provide alternative methods of external

interaction with the MI; one uses the Unix FIFO semantics to allow for simple user

interaction, while the other implements an XMLRPC mechanism. These access

modules exchange data with OpenSER and its modules through a number of C

structures, particularly struct mi_node, struct mi_root and struct mi_attr.

5.3.2. Data management bindings in OpenSER

As described above, OpenSER uses relational database schemata for multiple data pro-

cessing tasks. While this holds true for most standard modules, support for other data

back-ends is integrated for a limited set of functions. The �Triple-A systems� RA-

DIUS and DIAMETER can be utilized for authentication, authorization and accounting

through bindings to the freeRADIUS and openRADIUS libraries (the DIAMETER im-

plemented does not rely on a given library). Plain text �les can be used as relational

database substitutes through the dbtext module.

OpenSER's modules are deeply interweaved with the data they work on and the struc-

ture they are stored in. Due to this, substituting the relational models with arbitrary

storages is not easily possible. Despite this fact, a number of di�erent implementations

for accessing LDAP directories have been created in the past. All these implementa-

tions are currently restricted to provide data for prede�ned sets of purposes, however,

and generally do not allow for access through existing OpenSER modules.

The �rst major implementation of LDAP in SER (not OpenSER, in this case) was

the ldap(s) module developed at the ETH Zürich [12]. This relatively simple module

can request single attributes from an LDAP directory to substitute the recipient URI of

a SIP message. While these modules are relatively simple to use, they are not able to

provide any other information from the LDAP service than a modi�ed RURI.

In January 2007, another implementation of an LDAP module for SER (again, not

OpenSER) was published [11]. In this case, an underlying LDAP infrastructure module

can be accessed from separate modules. A single client module exists which provides

52

5.4: Refining the requirements

authentication against an LDAP service. While LDAP authentication in the context of

a SIP server is not recommendable, the concept of an LDAP module as a data source

and other modules as data sinks could be extended for other parts of the server. It

would be necessary to duplicate large parts of the code, however, as every current data

sink module would need an LDAP counterpart.

Although OpenSER uses a relational schema to represent its data, this does not mean

that OpenSER is good at handling SQL databases. The used schema is re�ected by

unencapsulated details in the C sources. If a user wants OpenSER to interact with

�grown�, long established data sources, sophisticated data mapping technology has to be

used to map private and OpenSER's native schemata into each other.

5.4. Re�ning the requirements

In this chapter, OpenSER's handling of dynamic con�guration, transitional, and authen-

tication data has been examined, including the data access occurring in OpenSER and

its modules. Data paths from these modules to their respective back-ends were identi-

�ed. It became obvious that the current data access framework rigidly restricts the data

paths to the currently implemented relational model, without the potential to exchange

data with yet unknown, possibly well-established data sources. In particular, LDAP

directories which commonly contain information about present users are not accessible.

The tasks of this work can now be re�ned:

Currently existing OpenSER modules shall be given access to a �exible, con�gurable

data access layer. As the current code base is in use in various large, well-established

environments, the currently existing database API cannot be substituted, but needs to

be complemented.

The use case analysis tried to anticipate the most important functionalities of a VoIP

system, but many other OpenSER modules add to the features of the software subsys-

tems found above. Thus, it is necessary not only to implement complementary modules

that provide methods for foreseeable cases and technologies (such as an LDAP binding

for aliasing), but open the data paths for as yet unpredictable data �ows.

While the current data paths are restricted to a limited number of possible end points

for each of the paths, the extension that will be developed for this thesis will create

a network of arbitrary data sinks and sources, where every possible combination of

database and data consuming module can be realized.

53

Chapter 5: Requirements analysis

The access methods for the underlying technologies and the design of the new system

still have to be de�ned.

54

6. Speci�cation

Chapter 5 provided a better understanding of the data handling entities in OpenSER

and the problems that arise when adding new data sources and sinks to the system.

This chapter speci�es the stops that data transit and proposes a solution for extending

the data paths.

6.1. A �exible database backend for OpenSER

OpenSER is a modular software system. Approximately two thirds of its code are located

in the modules. The core system provides the base functionality for the SIP protocol,

TCP/UDP interfaces, con�g �le parsers and similar parts; modules add functions e.g.

for authentication, aliases, accounting and many others.

Database access involves three entities:

First, there are modules that require data-

base functionality, such as the alias data-

base. The second component is a generic

database API that provides basic relational

database handling functions, such as query,

insert or delete functions. The third par-

ticipant is a set of particular database mod-

ules for relational database management

system (RDBMS' for SQL databases or

text �les). These components are organized in a layered structure: the database im-

plementations provide a common interface for low level database access. The database

API creates a higher abstraction layer that facilitates a uni�ed access to the low level

drivers without the need to operate with raw SQL queries. Based on this API, modules

can request database information. On top of the described three layers, the core system

decides on routing based on the answers provided by module requests.

55

Chapter 6: Specification

A way to express the desired behavior when exchanging the relational database with

an arbitrary data back-end such as an LDAP directory has now to be developed.

The formulation of a data path has to be done in a static con�guration �le (see section

4.1.2.1). The next section will thus examine what the term �con�guration� describes in

a formalized way.

6.2. Digression: con�guring vs. programming

There are two methods of modifying the behavior of a software system: To con�gure

it, and to program it. This section will discuss some di�erences between these two

expressions in semi-formal terms.

In a strict sense, every program is a con�guration, and every con�guration is a pro-

gram. Each piece of software may be regarded as a con�guration of the underlying

computer system, while every con�guration is a program that is interpreted (�run�) by

a software's con�guration parser. This de�nition opposes common sense, however, and

a deeper understanding of this common sense will help in the decisions to be made.

A number of patterns is commonly used in con�guration �les; some of these are

described here:

• Flat attribute/value pairs: each line of the con�guration �le holds the name of one

attribute, plus one or more values for this attribute. A sample of this type of �le

is Post�x' main.cf1 con�guration �le. Con�guration �les of bash and PHP scripts

often follow this pattern, as does OpenSER's global con�guration.

• �INI style�: contains sections marked by �[section]� statements, plus one-line AVPs.

This type of con�guration �le became famous with Microsoft's Windows 3.x and

is still used e.g. by the Samba �le server.

• Block de�nitions: Sections are marked by a section name; the section itself is

enclosed in curly braces. The advantage of this type of con�guration over �at

and INI style con�gs is their ability to hold nested information. The name server

system �bind� uses con�g �les of this type.

• XML con�guration �les: Values are enclosed in XML tags denoting the described

attribute.

1Post�x is a well-known industrial-strength open source mail server solution. Its static con�guration
is based on two primary con�guration �les.

56

6.2: Digression: configuring vs. programming

• Hierarchical trees: Each node in a tree may hold multiple attribute/value pairs

plus multiple other nodes. The �le format may be binary. The best known sample

of this type of con�guration is the Microsoft Windows registry.

In a formalized sense, all these methods create �rst order relations, as the right hand

side of each assignment is constant. Although that constant may describe a processing

instruction, e.g. by assigning regular expressions, these expressions cannot refer any

type of function.

As opposed to a �con�guration�, a �program� is able to express higher order functions

that create a right hand side of an equation by calling arbitrary functions.

Where an expression such as

1 foo=8;

will commonly occur as a con�guration statement, calling a function to produce the

output �bar� will rather be regarded as being a �program�:

1 bar=2*2;

2 foo=2*bar;

The next listing makes this di�erentiation even clearer:

1 bar=2*i;

2 foo=2*bar;

calculates the value of �foo� by referring to a variable �i� that is only de�ned in the

context of the program executing the statement. This clearly looks like an excerpt from

a program source code.

All this boils down to a gradual distinction between a programming language featuring

rich, powerful expressions on the one hand and con�guration languages with simple

attribute/value pairs on the other.

The following table shows a number of common expressions in �pure� con�guration

�les and programs:
Configuration Program

Scalar values: integers, numbers, strings Variables, operations on variables

sections, nodes functions, subroutines

Information about the subject Information about how to handle the subject

57

Chapter 6: Specification

6.3. Functions in OpenSER modules

In this section, the process of calling a function in an OpenSER module will be described.

One of the most interesting module functions is the alias lookup function that currently

exists in the alias_db module. This function shall serve as an example throughout this

section. Upon an incoming call, it is able to look up possible destination addresses in

case that the incoming call is destined to an alias address.

To formalize the low level processes during a call to the alias_db_lookup (and other

module functions that rely on a database), a couple of data types need to be de�ned

�rst:

Let Υ be the set of valid URIs. Parts of these URIs are the user (Θ) and domain (∆)

part. There exists a bijective function g so that

g(t, d) = u; g′(u) =

(
t

d

)
; u ∈ Υ, t ∈ Θ, d ∈ ∆

2. This also means that Υ ≡ Θ×∆. Let Φ be an arbitrary set (the remaining attributes

of the sip_msg). The set of SIP message objects in OpenSER, represented by the C

structure sip_msg, is then implemented as µ = Υ× Φ.

Let there be a set ε denoting events (such as transiting SIP calls).

The data paths utilized during such a database request will be exemplarily displayed

for an alias lookup in the alias_db module:

OpenSER executes

fin : ε → µ

creating a sip_msg structure on the occurrence of an event, and calls the alias lookup

function in module:

flookupalias : µ → µ, f(m) = m′

The lookup routine extracts the user and domain parts of the URI:

fpre : µ → Θ×∆

2The function g is the concatenation of the string 'sip:', the user part ∈ Θ, the '@' symbol and the
domain part ∈ ∆. Its reverse function splits these tokens.

58

6.3: Functions in OpenSER modules

which is then passed to the SQL request

fSQL : Θ×∆ → Θ×∆; fSQL(t, d) =

(
t′

d′

)

It is important to note that this function fSQLis two-�gured, taking two scalar values

t, d and returning the tuple t′, d′; the extraction of t, d is implemented directly in the

C source. The pair t′, d′ resulting from fSQL are then postprocessed, passed back to

OpenSER and the resulting SIP message is �nally sent to the destination host:

fpost : Θ×∆× Φ → µ

fout : µ → ε

In short, the operations on the SIP message object that are executed during the run

of the alias lookup function create a number of data types with di�erent life cycles. This

can be visualized:

One of the existing OpenSERmodules (�lcr�) uses the raw query capability (�DB_CAP_-

RAW_QUERY�) of databases, creating the SQL statements in the module already.

It was shown that the invocation of a module function that uses a database back-end

resolves to a number of stacked functions:

fcall(m) = fpost(fSQL(fpre(m)))

To provide maximum �exibility for the user to de�ne this call, it is necessary to provide

at least con�guration statements to specify fpre and fpost as well as a choice of di�erent

frequest functions that relay the operations to a particular database back-end.

59

Chapter 6: Specification

6.4. Expressing a data path

The terms �con�guration� and �programming� as well as the processes involved during

the run of the alias lookup in the alias_db module have been discussed. What is

necessary to exchange the database layer? Unfortunately, the alias_db is closely related

to the underlying relational data model; even worse, it is already dependent on the

given database schema that consists of tuples of this form: (user, domain, alias_user,

alias_domain). The following table shows a sample alias database table for OpenSER:

user domain alias_user alias_domain

gjas uni-freiburg.de gerhard.schneider rz.uni-freiburg.de
gjas uni-freiburg.de big.boss rz.uni-freiburg.de

dsuchod uni-freiburg.de dirk.von.suchodoletz rz.uni-freiburg.de
friedrib uni-freiburg.de bastian.friedrich uni-freiburg.de

The extraction of the alias_user/alias_domain tuple from the incoming sip_msg

structure is done in the alias_db module3. Directly trying to attach an LDAP back-

end that only has a single value for addresses (e.g. the email attribute, email aliases, or

the user's telephone number) will involve a major re-implementation of the alias_db

module4. Additionally, there needs to be a way to express the pre- and processing steps

before and after database access. These functions fpre and fpost would have to be de�ned

in the con�guration �le as well as the choice of frequest (which would substitute fSQL).

6.4.1. Possible tradeo�s

It was demonstrated in section 6.3 that the type and amount of information transiting

the OpenSER is di�erent in each layer. Depending on the software design, the de�nition

of each of the functions described there may be implemented at various points. The

�intelligence� contained in the implementation of fpre, fpost and frequest can reside at any

point between the extremes �only C code, no con�guration� and �only con�guration, no

C code�. This theory can be visualized by the following graphic:

3String processing is done by the message parser; the alias_db module initiates the parsing process
and requests these components from the structure.

4The same holds true for other modules and their respective data.

60

6.4: Expressing a data path

• (1) denotes the point where all information about the data path is located in

the OpenSER sources. An LDAP access would be implemented directly in the C

source. Con�guration is non-existent.

Programs of this type are small, monolithic pieces of software. This type of archi-

tecture is not appropriate for publicly deployed server software.

• (2) might denote the current state for accessing the alias database. The structure

of the database schema (two columns input, two columns output) is re�ected in

the C source. Con�guration may only change the database URI and the column

names. This information is implicitly included as parameters in the fSQL calls.

• (3) would be a possible setup for adding a new database technology. Additional

data sources need to be re�ected by adding new modules for each of them. An alias

database based on LDAP requests could work this way: an alias_ldap module

could complement the current alias_db module. The OpenSER con�guration

would call two distinct functions from two modules for LDAP and SQL requests;

they would be separately con�gured for certain URIs and �lter strings. The �one

input/one output� schema in LDAP had to be re�ected in the C source, similar to

the current two-�gured SQL version. The fpre and fpost functions are implemented

in C; fSQL is complemented with an independently implemented fLDAP .

Some existing modules in OpenSER such as the usrloc module resemble this

architecture by letting the user con�gure the usage of the underlying database.

The SER ldap module by Rogelio Baucells (see section 11.3.3) also follows this

template.

• (4) would include a very rich con�guration language that enables all existing

OpenSER modules to utilize common data paths. Pre- and postprocessing of

input and output have to be de�ned in the con�guration �le � which eventually

turns them into �programs� in the sense of section 6.2. To mimic the behavior of

the current alias_db module, a con�guration language needs to be de�ned that

is able to split and concatenate values in arbitrary ways, passing sub-strings to

arbitrary back-ends. fpre/post are de�ned in the con�guration �le; a uni�ed data

de�nition language creates a common knowledge about the structure of data be-

tween the OpenSER modules with the con�guration language. Processed data are

then passed to a database API that decides on the back-end to be called based

on the con�guration. fSQL is substituted by a uni�ed fquery which in turn passes

61

Chapter 6: Specification

values to underlying new functions.

This type of architecture is similar to a three-tier-architecture such as CORBA.

• (5) Only a thin path from the OpenSER core to arbitrary con�gurations exists at

(5). The expression power is maintained through a �real� programming language.

fpre/postprocess and fSQL/LDAP/query are no longer de�ned in OpenSER itself but are

fully de�ned and implemented within the con�guration. An appropriate infras-

tructure helps administrators in this process.

The well known web server software �Apache� features mod_perl to accomplish

arbitrary administrative control.

6.4.2. Evaluating the options

Each of the options above has unique advantages and disadvantages, some of which will

be discussed here.

Pros Cons

(1) The administrator does not need to

con�gure the database. Setting up the

system is easy.

Flexibility is lost. Adaption to new

database engines is as di�cult and ex-

pensive as the integration of new mod-

ules.

The setup of new data paths is

only possible by modifying OpenSER's

source code.

62

6.4: Expressing a data path

Pros Cons

(2/3) The current OpenSER structure can re-

main untouched. Existing implemen-

tations do not have to be modi�ed.

Most of the current system layout can

be transported to newly implemented

modules for the desired functionality.

Every pair of data source and sink

needs a distinct module, or each mod-

ule needs to know about every possible

pair of data source and sink. E.g., the

alias_db module needs to be changed

when a di�erent database schema such

as a one-�gured LDAP schema needs to

be utilized.

Implementing this would result in a

large number of new modules that com-

pensate current weaknesses, but the

gained �exibility is restricted to the

modules where the features are imple-

mented.

(4) A clean abstraction layer between data

sources and data sinks exists. The ex-

change of a data source in the context

of a certain module (data sink) is sim-

ply done by changing a set of con�gu-

ration options.

A new programming language has to

be de�ned, and an interpreter for

this language has to be implemented.

Currently implemented modules have

to undergo far reaching modi�cations.

Currently, the module is able to use its

knowledge of the structure of the data

it handles. This ability is lost for the

sake of �exibility.

The design of an abstraction layer

and porting the current interfaces

to this would create the necessity

to re-implement/modify the current

database API and thus all modules

based on it � a laborious task. In the

context of actively used open source

software, it is questionable whether

the OpenSER maintainers would ac-

cept such a far reaching change.

63

Chapter 6: Specification

Pros Cons

(5) Maximum �exibility is given to the ad-

ministrator. He is able to con�gure ar-

bitrary system behavior without mod-

ifying the OpenSER sources. As long

as the incorporated programming lan-

guage is able to access any data source,

it can be used in OpenSER. Data paths

completely di�erent from the ones cur-

rently considered become possible.

The administrator no longer needs to

be able to �con�gure�, he rather has to

�program�. Generation of dead locks

and other software bugs in the con-

�guration are a possible consequence.

These disadvantages can be largely

concealed by creating an extensive

�programming library� that covers the

most common tasks.

Without any doubt, option (1) is not a good choice. It reduces �exibility below the

current level while increasing the need for low level programming.

Option (2/3) will be the easiest choice, but the disadvantage of having to implement

OpenSER module code for each and every pair of data source/sink outweighs it's use-

fulness. The inherent lack of �exibility would just be transferred to a new back-end.

Realizing this option is a programming task and thus will not be done here.

This leaves the choice between a major redesign of the current database access mech-

anisms including the reimplementation of large OpenSER parts on the one hand, and

the integration of a programming language on the other.

While choice (4) has the advantage of a clean design that exactly �ts the needs found

in the requirements analysis, the scope of this project would vastly be increased by

integrating a full featured programming language in OpenSER in the sense of (5) � far

beyond the range of database access. Due to this, the implementation will be based on

the concept (5).

Integration of programming languages in software systems for user interaction is de-

scribed as �End User Development� (EUD). In the next part, the idea of EUD will be

discussed and a number of other EUD implementations will be evaluated. This exami-

nation will support the process of designing a sensible environment.

64

Part III.

End User Development

65

7. End User Development in

dynamic systems

As discussed above, the integration of a programming language in OpenSER will create

a large value and lots of new opportunities. The idea of integrating languages can now

be extended to software systems in a wider range.

The idea of scripting software systems to dynamically modify their behavior is not new.

A large number of standard and domain speci�c software is equipped with programming

interfaces [44, 47].

Recent research has coined the term �End User Development� (EUD) [35] to denote

software extensions and modi�cations by end users. The bene�ts of EUD have been

examined [53] in detail. Although scripting and macro languages are a key to EUD,

this paradigm may be more broadly understood when it comes to scienti�c computing.

In that context, EUD also includes e.g. bioinformatics programming using specialized

programming libraries. Research on EUD has been focused on social and political aspects

rather than on technology. This chapter will thus examine particular implementations

of EUD environments under various aspects.

To achieve a deeper understanding of how embedded scripting languages work in

software, some embeddable languages will be described �rst. A number of software

systems with scripting integration will then be analyzed and their common features will

be discussed. This will lead to a better comprehension of how the embedded scripts can

modify a system and how transactions between the software itself and the scripts are

handled. The analysis will help in choosing a sensible EUD language and the appropriate

design of the environment.

67

Chapter 7: EUD

7.1. Embeddable languages

Before discussing applications that integrate scripting abilities, a number of program-

ming languages that are commonly deployed for such tasks will brie�y be described. The

list does not claim completeness, but shows di�erent aspects of integrated languages.

The focuses of the languages di�er widely. Some of them are domain speci�c languages

(DSL, [57, 55]) that are speci�cally designed to support the application they run in, while

others are general purpose languages with an integration framework.

7.1.1. Perl

One of the best known scripting languages in the open source community is Perl. The

word Perl (with a capital P) denotes the language as such, while perl (with a lower case

p) is used for the interpreter. The language and its single implementation were initially

developed by Larry Wall. The �rst version was released in 1987, while the core language

as it is known today was released as Perl 5 in 1994.

Starting in 2006, work on Perl 6 has begun. Language syntax as well as the runtime

environment are being completely reworked. Currently, the availability of a stable ver-

sion is not yet be foreseeable. Even after the availability of Perl 6, version 5 will be

supported on a long-term basis, as both systems � Perl 5 and 6 � will not be source code

compatible.

Initially, Perl was focused on simple text processing, but has since evolved to a general

purpose language. Focus was put on ease of use. This led to a dynamic (implicit) type

system that can help in the development of small scripts, but creates a number of

problems in larger scenarios.

Perl is equipped with a powerful embedding framework for C/C++ programs. The

interpreter is available as a shared library and can be linked into arbitrary programs.

Multiple C function calls allow C programs to access Perl functions, objects and variables

inside the interpreter. On the other hand, so-called extensions make it possible for Perl

scripts to modify values or call functions that are implemented in C. Programming

languages other than C and C++ are not supported.

One of the main strengths of Perl is not the language itself, but its huge source code

archive, CPAN (Comprehensive Perl Archive Network). This repository o�ers more than

4000 modules and numerous bundles of modules for all aspects of computing.

68

7.1: Embeddable languages

7.1.2. PHP

PHP, the PHP Hypertext Processor, was designed as a domain speci�c language to be

integrated in web server mechanisms. Its primary target is the simple evaluation of

program sections in HTML pages delivered by a web server. Special attention was given

to the access of relational databases. In contrast to client side scripting (JavaScript,

VBScript), PHP scripts are executed by the server.

PHP's ancestors in terms of language design are Perl, Java and C.

During its history, PHP has been extended to a general purpose language. Although

it is well possible to write programs that are independent from the context of a web

server, this option is rarely used.

PHP has been integrated into multiple web servers. Yet, the embedding framework

for arbitrary C/C++ programs is marked as experimental code.

7.1.3. Lua

Most languages discussed in this section were designed either distinctively for a single

application, or as general purpose languages that �coincidentally� support embedding.

Lua was developed especially as a scripting language for embedding. Historically, it has

often been used in graphically focused software and computer games.

Lua's scope is a rather simple control over the scripted environments. Its primary

advantage over other languages listed in this chapter is the fact that it can instantly

access C data structures, making their evaluation and modi�cation extremely simple.

All other languages listed require a more or less sophisticated data transformation.

7.1.4. Python

Python is a multi-paradigm language that features a combination of imperative and

functional aspects [20]. Unlike many other scripting languages, Python features an

explicit typing system [33].

While the names of the other languages discussed in this section often refer to the

language itself as well as to its implementation, there are multiple implementations of

this language, each with its own pros and cons. Python has a big, active community

that has created a valuable collection of modules comparable to Perl's CPAN, although

the number of packages in that archive is signi�cantly lower.

69

Chapter 7: EUD

7.1.5. Ruby

Similar to Python, Ruby was designed with simplicity in mind (�Principle of least sur-

prise�, POLS) [17]. Although it is slightly more related to imperative programming,

functional syntax is also possible in many cases.

For quite a time, Ruby did not receive a lot of attention, as it was only available with

Japanese documentation. This has changed during the last years. The language has

recently gained a lot of international attention through its new web framework �Ruby

on Rails�.

7.1.6. LISP and Scheme

LISP, the LISt Processor, was one of the �rst functional programming languages. De-

signed in the 1950s, it was initially implemented as a language to represent the lambda

calculus in a computer. As such, is does not re�ect the sequential execution of statements

as present in imperative programming languages and inherent to the von Neumann archi-

tecture. On the other hand, multiple concepts can be expressed in functional statements

in a very short, elegant and comprehensible way.

Scheme is a dialect of LISP, but extends the language with a number of imperative

concepts.

7.1.7. Basic dialects

BASIC, the �Beginner's All-purpose Symbolic Instruction Code�, is a programming lan-

guage with a long tradition of being used by inexperienced users. Not only was it

deployed as the standard command environment on early home computers, it was also

the foundation product of Microsoft. In later years, BASIC was repeatedly implemented

as an integrated language in all kinds of desktop and workstation software, especially

by Microsoft.

In Microsoft O�ce, WordBasic and later Visual Basic for Applications (VBA) dis-

placed earlier macro languages. VBA was also licensed by other vendors and has been

integrated e.g. in AutoCAD or WordPerfect. Communication between VBA and the

host application is realized through the OLE interface.

StarO�ce and OpenO�ce use their own Basic dialect as an EUD environment.

70

7.2: Analyzing EUD implementations

7.1.8. Other languages

Software systems of all kinds have been equipped with embedded programming or script-

ing. Some of them were called �macro languages�, as their primary focus was the se-

quential execution of user input. Most of these languages have been dropped in favor of

more widely accepted languages, such as the ones described above.

So-called �shells� in UNIX environments can be regarded as embedded languages of

the operating system.

7.2. Analyzing EUD implementations

Countless modern software systems with many di�erent scopes are equipped with script-

ing abilities, ranging from desktop software such as o�ce suites over networking clients

(e.g. chat software) to industrial strength server software. One of the best-known and

most commonly deployed scripting frameworks is Apache's mod_perl.

Although the services provided by these pieces of software di�er largely, their scripting

interfaces provide a level of similarity by creating a means for the user1 to modify or

de�ne the system's behavior in reaction to certain events.

The examined solutions are examples from di�erent areas of computing and represent

alternative approaches to the problem.

7.2.1. Apache and mod_perl

The Apache HTTP Server is the leading web server software [36]. Although a number

of script languages can be integrated into the open source project [19], the most sophis-

ticated framework is the Perl module mod_perl, as it allows for much more than �only�

delivering dynamic content.

The mod_perl website states the following features on their �What is mod_perl?�

site [7]:

• Accelerate your existing dynamic content

• Easily create custom modules that become part of Apache

• Gain access to all request stages

1The term �user� in the context of server software refers to the system's administrator, as opposed to
the end user that uses the service.

71

Chapter 7: EUD

• Con�gure Apache with Perl

• Install Third-party modules

• Application Frameworks

• Apache 2.X support

• Active Support Community

Although the primary usage of mod_perl is the accelerated delivery of dynamic content,

similar to the execution of CGI scripts, the feature list vastly extends this option.

Apache is a modular system. Modules can register with di�erent types of handlers

[21], only one of them being the content handler. The Perl module hooks into the

standard module chain and thus provides methods to largely modify Apache's behavior.

By using the server's API, the �glue layer� allows Perl scripts to access the underlying

core technology of Apache. A list of categories of functions in the Apache server API

can be found in [21, p. 51]. A Perl extension creates an access path for perl scripts to

the API functions.

The mod_perl project has been initiated in 1996 and has since evolved to a consider-

able part of the Apache project.

As mentioned, the primary target of mod_perl is the generation of dynamic web

content. Upon receipt of a page request, Apache calls a Perl function2 and returns its

output as a web page. It is completely up to the script's responsibility how the function

generates its output: Commonly, databases are accessed, but the returned data may as

well depend on any other information available for the system.

Besides that, the scope of mod_perl is widely extended by its class library. Methods of

its classes let the module access a large number of Apache internals, e.g. its con�guration

tree.

7.2.1.1. Analyzing the framework

It would be out of proportion to fully analyze the class structure of mod_perl's library.

Nonetheless it will be helpful to examine the way Apache interacts with the mod_perl.

mod_perl's API is structured in three main namespaces[2], Apache::3, APR:: and

ModPerl::. While the Apache:: namespace contains classes that provide access to

2Depending on the chosen setup, the function may be the �anonymous� function de�ned by a script's
body

3Replaced by Apache2:: in Apache 2.x/mod_perl 2.0

72

7.2: Analyzing EUD implementations

low level Apache internals � such as processes or connections, the APR:: namespace

provides the glue layer for higher level functions from the Apache Portable Runtime

API. ModPerl:: represents the set of classes that provide access to the functions

that are unique to mod_perl, e.g. the exploration of the Perl interpreter's namespace

(ModPerl::MethodLookup).

7.2.2. O�ce suites and macro languages

In the 1980's, text processing programs such as the famous WordStar began to integrate

macro languages in their products. Through these means, the user could automate

frequently occurring steps of their work. This technique was soon adopted in a wider

range of end user programs such as the ubiquitous spreadsheet software.

While in the beginning the de�nition of macros was merely the notion of a sequence of

key presses, modern o�ce suites are equipped with full-featured programming languages.

Microsoft introduced WordBasic in Microsoft Word that was later substituted by Vi-

sual Basic for Applications (VBA). In StarO�ce, the language BASIC was adopted,

eventually forming today's OpenO�ce.org Basic.

Most modern o�ce suites consist of a text processing program, a spreadsheet, graphic

software and database management system. Their common feature is the usage on end

user desktops, but the functionality, scope and user focus largely di�er.

In text processing software, the primary objective of an integrated language is more

or less simple macro processing, e.g. switching between certain text formatting options

or sequentially inserting external data. More sophisticated programs might carry out

dynamic search-and-replace processes or remove unwanted data.

The execution of functions in the context of spreadsheet software is a little more inter-

esting, where mathematical calculations can be implemented in a programming language.

This enables the user to carry out powerful calculations without being restricted to the

� usually limited � subset of functions o�ered by the spreadsheet system itself.

In database management systems (DBMS), SQL has been established as the standard

processing language. Unfortunately, this language lacks a number of concepts. While

regular relational DBMS have facilitated Stored Procedures and integrated languages

such as Oracle's PL/SQL, Microsoft's desktop DBMS provides an API for Visual Basic

for Applications.

A sample of a scriptable graphic program, although not part of an o�ce suite, will be

discussed in the next section.

73

Chapter 7: EUD

7.2.2.1. Technical aspects of Visual Basic for Applications

VBA o�ers the full range of full featured programming languages. In the context of an

EUD environment, however, it is primarily targeted at controlling the host software sys-

tem. The main API that is used in this context is the OLE API o�ered by the software;

additionally, the interfaces of all .NET classes are available. VBA thus o�ers a wide

range of usage from �simple macros� to �almost full featured integrated applications�.

The downside of this omnipotent EUD environment is that document macros can also

be used to spread viruses and other malware by tricking users into opening malicious

�les.

7.2.3. Gimp and Scheme

One of the �rst publicly observed open source programs was the graphic program Gimp.

It provided a remarkable power as free software. One of its strengths was the integrated

scripting plugin �Script-Fu�, based on a �small footprint Scheme interpreter� SIOD [4].

Although today there are interfaces for other languages as well, Scheme is still the most

commonly used language in Gimp.

A wide range of scopes exists for scripts:

• Creation of graphics. A web designer can create graphical buttons for web sites,

but with di�erent text

• Automated processing of graphics. A photographer could eliminate or add certain

properties to his pictures

• Web services can control Gimp to react to user input, creating or modifying graph-

ics

Script-Fu is able to control most aspects of Gimp through a dedicated interface. The

Procedural DataBase (PDB) stores information about the functions that are available

from the core system or from plugins. By calling these functions, scripts have the same

control over the system that the user has.

7.3. Properties of EUD environments

A set of environments that embed programming languages in software systems for dif-

ferent contexts have been demonstrated above. Their obvious common feature is the

74

7.3: Properties of EUD environments

user's opportunity to automate responses to recurring events in the system. The focuses

of the discussed systems di�er widely, however.

In interactive desktop software, the EUD environments focus on automation of steps

which can � theoretically � equally be executed by the user. The interface to which the

embedded language is bound is on a similar level as the menus, widgets and forms in the

user front-end. In server software such as the Apache/mod_perl combination discussed

above, the EUD environment is integrated to de�ne the system behavior in reaction to

server requests.

7.3.1. Interfaces

All systems discussed above provide programming interfaces (APIs) for the language

environments they integrate. Formally, an interface is a set of declarations of functions

or object methods and the data types and variables on which they may operate. While

traditional APIs provide type signatures for the same programming language for which

they are developed, the EUD interfaces provide a programming interface for a di�erent

language. Thus, a mapping of type signatures from the host software to the EUD

environment has to be developed.

The EUD programming interfaces provide a level of abstraction to access the internal

functionality and data in a uniform way. A mapping of the internal software design to

the API available for EUD has to be found. This leads to the following questions:

• Who is the average user of an EUD environment?

• What are the constraints regarding the complexity of the API?

• What functionality and data should be accessible? Does the answer to this question

depend on the host software system?

The answer to the �rst question results in answers to the other issues.

The expected end user in EUD environments will often not be a quali�ed software

engineer, but rather a regular software user. End users will often have only a poor

knowledge of the system, about the programming language, and about programming

concepts and software quality.

This suggests an answer to other questions: The API provided should be as small as

possible, but still include enough functionality not to restrict the user in the development

75

Chapter 7: EUD

of his plans. An inappropriately complex API will make the system overly hard to un-

derstand and to learn. The exposed functionality should be restricted to the anticipated

amount necessary for the users.

A coverage of every internal function

• confuses users with an excessive amount of functionality

• is a source of errors

• unnecessarily reveals internal complexity

7.3.2. Design constraints

The EUD environments discussed in this chapter focus on di�erent aspects of computing.

The comprehension of programming will largely vary among their users. A scientist using

a spreadsheet software may know a lot about the basic mathematical constructs for his

calculations, but not much about the way these constructs are conveyed to a piece of

software. While a web server administrator may well have fundamental knowledge about

the way computers work (and � in this case � networks and client/server architectures), a

photographer using a graphics software such as Gimp may not. On the other hand, Gimp

may as well be used by a software developer to modify images on the �y. These di�erences

between users of the same software make it di�cult to �nd custom characteristics and

necessary features of EUD environments.

It is thus not possible to fully de�ne globally valid qualities for possible EUD envi-

ronments. Instead, a number of questions that should be considered during the design

of such a system can be collected:

• What is the expected user pro�le?

• How much user knowledge about underlying technology and programming is ex-

pected?

• Which applications and use cases can be anticipated?

• Will it be su�cient to provide a domain speci�c system, or will a user need a full

featured programming system?

• How much system internals need to be exposed?

Answers to these questions for an EUD environment in OpenSER will be given in the

next chapter.

76

Part IV.

Design, Implementation, Testing

77

8. Design

In the �rst half of this work, a fundamental concept was developed: The integration of

an EUD environment in the OpenSER SIP server shall give the user the �exibility to

access arbitrary sources of information to modify the routing of SIP messages. In this

chapter, a design of the necessary implementation details will be developed.

8.1. Considerations on an EUD environment for

OpenSER

The results of the studies in chapter 6 suggested the implementation of an EUD environ-

ment in OpenSER. As comparable systems were examined and their common constraints

were derived, answers to the questions developed in the last chapter will now be given

to help to design a sensible OpenSER environment.

In the technology analysis of chapter 3 OpenSER has been demonstrated to be a

software that is not simple to install and to maintain. Thus, it can be expected that

its users will be quali�ed system administrators that do have a considerable amount of

experience with SIP based systems. Adapting OpenSER to local circumstances requires

users to become acquainted with the available modules and their functions.

Although end users cannot be expected to be quali�ed software developers, basic

knowledge of script programming languages can be assumed. The best known script-

ing environments on Unix based systems will probably be the shell interpreters (bash,

(t)csh...) and the programming language Perl discussed above. While the development

of a domain speci�c language for SIP processing may well be possible, an already known,

stable and widely available language will be easier for administrators to use. The risk

of missing necessary features is lower when using a general purpose language.

The use cases examined in the requirements analysis will de�ne a subset of the antici-

pated use cases of the EUD environment. On the other hand, integrating a full featured

programming language will create lots of new opportunities that will create new use

cases.

79

Chapter 8: Design

8.1.1. Choosing a language

In the last chapter, a set of commonly used embedded languages was discussed. The

following table demonstrates advantages and disadvantages of the options. Both user

and technological aspects are listed.

Language Pros Cons

Perl

• Widely spread

• Widely known by system ad-

ministrators

• Large and technologically ad-

vanced class library

• Appropriate for short, simple

functions as well as for com-

plex programs

• Powerful string processing

with regular expressions

• Base technology in Collax

products

• Can be quite confusing, de-

pending on usage

PHP

• Comparably simple and easy

to learn

• Good integrated database ac-

cess

• Embedding framework and

language concepts only apply

to context of web servers

80

8.1: Considerations on an EUD environment for OpenSER

Language Pros Cons

Lua

• Very good integration frame-

work

• Not widely known

• Small class library, no third

party module repository.

LDAP and SQL bindings are

available on the net, however

Python

• Modern, multi-paradigm

script language

• Ambitious projects evolve

around python in the Unix

scene

• While similarly focused, not

(yet) as widely known as Perl

Ruby

• Modern, promising language • Not (yet) widely known

• LDAP access only available

through third party module

Lisp

• As a functional language, it

seems to be well suitable for

the concept of de�ning the

functions fpre and fpost

• Multiple implementations to

choose from

• Multiple implementations to

evaluate

• Database access and regular

expressions only available as

third-party modules

• Not easy to master by users

who are accustomed to im-

perative programming

81

Chapter 8: Design

Language Pros Cons

Basic

• Widely known

• According to its name, suit-

able for beginners

• ScriptBasic provides integra-

tion framework

• Data types in standard Basic

not su�cient for sensible data

handling

• Limited libraries available

Others

• Domain speci�c language

would �t needs best

• Lots of options available

• Developing a new language is

complex

• Evaluation of more choices

increasingly costly

While the choice of a sensible embedded language in�uences some design aspects and

obviously the implementation, more than one language would �t the project's needs.

Three primary reasons �x the decision for Perl:

• Collax as this project's initiator uses Perl

• Perl is well known among system administrators, the intended audience

• Perl's implementation and embedding framework is stable and well supported

8.2. Data paths

The integration of Perl to open data paths in OpenSER has now been �xed as the

resolution method of this thesis' goal. Coming back to the de�nitions of section 5.3.1,

it remains to be de�ned to which data paths the Perl functions should attach. The

functionalities de�ned here will be designed later.

82

8.3: Design patterns

Core/module interface should be used for embedding of simple Perl function calls

which can de�ne OpenSER's routing. Answers of simple database requests can directly

be injected into the routing decisions.

Module/database API While the available database API should not be substituted,

a module can be attached to the database API to provide access to arbitrary data.

This module will be a database module comparable to the currently existing relational

database bindings.

database module/technology Perl features packages for many given database tech-

nologies, including LDAP and Berkeley DB. The database module/technology interface

is not an internal one, so users of the database module are free to use any technology

binding available.

Module/module While it will be possible for other modules to attach to the core/-

module interface (�incoming� from the perspective of the developed code), outgoing

requests should be made available through interfaces to module functions and central

APIs. Initially, a separate API will not be provided.

MI interface An MI implementation is not necessary at the moment.

The implemented bindings thus will target towards the core/module interface and the

module/database API.

8.3. Design patterns

Design patterns are traditional methods of software engineering to �nd and solve com-

monly recurring issues in software development. The topic is rather complex, so the

following discussion will only brie�y describe two patterns that can be found in this

context.

8.3.1. The bridge pattern

The bridge pattern is meant to �decouple an abstraction from its implementation so

that the two can vary independently� ([18]). The bridge uses abstraction mechanisms

83

Chapter 8: Design

(depending on the programming languages) to provide an interface to di�erent �classes�

that provide a de�ned set of functionality.

The database API follows the bridge pattern. While the implementation of certain

database modules and the data they return can vary, a single bridge from regular modules

to the database back-ends is provided by the DB API.

While the normal module implementation only abstracts the module binding mecha-

nisms, the core/module API also follows the bridge pattern.

As the implementation of bindings to these interfaces is planned, the bridge pattern

is used �unknowingly�: the APIs are already given and will not be modi�ed.

8.3.2. The adapter pattern

When two objects with di�erent APIs are given, they cannot exchange data. An adapter

can �adapt� the interface of a given class into the one expected by a client class. A non-

software example of this would be a USB to parallel port adapter for printers.

The adapter pattern is also referred to as the wrapper pattern. Like many other

design patterns, it is more or less directly connected to object or class oriented design,

so its applicability in the context of the purely imperative OpenSER is restricted. It will

be re�ected by the adaption of non-relational data interfaces to the relational module

requests, however.

8.4. A Perl module

As the OpenSER's module API is given, the design of the Perl module has to follow the

given structure.

OpenSER modules contain functions that can be accessed by the core. During SIP

message processing, a reference (pointer) to the SIP message structure, and (possibly)

two user-de�ned string values are passed to the functions. The concept for the Perl

module includes a pair of functions that call Perl functions, passing them the same

parameters. While the �rst function, perl_exec(), will be equivalent to regular module

functions, the other one, perl_exec_simple(), will not be passed a reference to the

SIP message. The latter may be used for trivial requests that return an information

independent of the SIP message content, e.g. based on the current time (�no calls

outside o�ce hours�), or based on the information that they were triggered (increase a

message counter).

84

8.4: A Perl module

On possession of control by the Perl function, it may evaluate or modify the message.

To do this, it needs getter and setter functions for the SIP message. Getter functions

will return parts of the SIP message (that was already parsed by OpenSER), such as the

request method, or the recipient URI. Setter functions will let it modify the RURI and

internal properties and �ags used by OpenSER. The availability of textual modi�cation

is not necessary, as other modules (especially the textops module) provide functions for

this task.

In most �real world� cases, only minor parts of the SIP message � such as as the RURI

� will be evaluated in the Perl script. Transforming the structure to a Perl equivalent

and re-transforming its output would have a big performance impact. Instead, the C

pointer (struct *sip_msg) can be wrapped into a Perl structure of a dedicated, newly

created Perl class. This class will be called OpenSER::Message. The getter functions

in that class will return Perl representations of the strings contained in the structure.

Thus, the functions that have to be implemented are pre-determined by the attributes

of the sip_msg structure.

A SIP RURI consists of di�erent parts, such as user and host names, ports, or transport

methods. The OpenSER parser creates a structure struct *sip_uri inside the sip_msg

structure that contains the parsed components of this URI. Although other URIs in a

message are not parsed, an additional class for URIs will be created. This class will be

called OpenSER::URI. It will have additional getter functions for each component of the

URI.

Regular OpenSER scripts often use pseudo variables and AVPs. While pseudo vari-

ables are properties of a SIP message, AVPs are not. Thus, a function pseudoVar(string)

can be implemented in the OpenSER::Message class, parsing the argument for pseudo

variables and substituting these by their values. AVP getter and setter functions are

de�ned in the third package, OpenSER::AVP.

Other core access functionality will be put in the base package, OpenSER. While the

AVPs in fact are core functionality, their distinct nature justi�es a distinct package.

The Perl API thus shall consist of the following functions:

• Core access: logging

• Message access:

� ��rstline�: Getters for message type (request or reply), status code and reason

in replies, SIP method and RURI in requests, SIP version string. Setter for

RURI.

85

Chapter 8: Design

� RURI: Getters for all available attributes

� Headers: Getters for full header, single header (identi�ed by parameter),

header names

� Message: Getters for full message, message body

� Flags: Getters and setters for OpenSER's message �ags

� Additional functionality: Call of other module functions, branching, pseudo

variable evaluation

• AVPs: get, set, destroy

8.5. Virtual database

While the Perl module provides a straight forward EUD environment for SIP message

handling, the original requirements speci�ed the opening of data paths from currently

existing OpenSER modules to arbitrary data providers. The Perl integration will thus be

used to implement a database module that can relay the relational database requests to

Perl functions. These user provided functions in turn can operate on arbitrary technology

back-ends.

This module will be referred to as the Perl Virtual Database, or VDB.

As the VDB is working on top of the Perl module, it will add to its namespace

OpenSER::.

The subset of relational operations available through OpenSER's database API in-

cludes insert, update, delete and query. Additionally, raw SQL queries may be sent to

the DB layer, which is not appropriate in the context of this module. A fetch operation

can fetch parts of the current query result; this will not be realizable in a sensible man-

ner. Currently, existing modules do not use the raw queries. The usrloc module can

use the fetching capability, but will work without it. Both raw query as well as fetch

support will thus not be provided by the VDB module.

In the relational algebra and calculus, queries can include the operations of projection,

selection, union, set union and set di�erence ([30]), which are re�ected by the respective

SQL statements/concepts �select�, �where�, joins, �union� and �except�. The OpenSER

query operation only de�nes projection and selection on single tables.

OpenSER database modules can de�ne a subset of the six possible DB API functions.

Four functions for insert, update, query and delete will be provided. After the argument

86

8.5: Virtual database

mapping to Perl types, the Perl functions of a (con�gured) Perl package is called. These

packages have to inherit from an abstract base class, OpenSER::VDB.

8.5.1. Class structure

The database API de�nes the type signatures of the supported operations. To under-

stand these signatures, the low level data structures need to be examined:

• A db_key_t is a string. The term refers to a column name in an SQL table rather

than to a key in the relational model.

• A db_op_t (operation) is one of the strings <, >, =, <=, >=, !=.

• A db_val_t (value) is a structure with a type identi�er, and a variable of that

type. The types available are INT (integer), DOUBLE (�oating point), STRING

(C string, i.e. char *), STR (OpenSER's extend strings, i.e. a C string plus it's

length as an int), DATETIME, BLOB (Binary Large OBject) and BITMAP (an

integer containing a set of bits).

• A db_row_t is a structure containing an array of values, and the number of ele-

ments in that array

• A db_res_t (result set) is:

� A structure col containing two arrays for the names and types of columns,

and a column counter

� An array of db_row_t

� The number of rows (three di�erent variables are used by database modules

that provide the DB_CAP_FETCH capability)

These types re�ect an intermediate level of abstraction between the C source code and

the relational model. There are no container types for each of the operations. The

analysis also shows that a result contains two parallel type de�nitions for each contained

value: one in the column de�nition, and another one with each value. While this is

not well designed, it will usually not create problems, as the database modules will set

identical information in both variables.

The DB API functions operate on these types:

• insert takes an array of keys and an array of values, plus a counter.

87

Chapter 8: Design

• update takes three arrays (keys, operations, values) to select the rows to be mod-

i�ed, and two arrays (keys, values) for the data to set, plus two counters for the

lengths of these arrays.

• delete takes three arrays (keys, operations, values) to select the rows to delete,

plus a counter.

• query takes three arrays (keys, operations, values) plus their length to specify the

select, an array of column names to return plus its length, the column to order by,

and a pointer to a db_res_t structure in which the result is stored

Each of the functions returns a boolean success value. While queries theoretically �re-

turn� the data set, they do not use the C return statement. Instead, the result set is

passed as a call-by-reference argument.

The structure shown here provides only a limited level of abstraction. In Perl, con-

tainer classes that aggregate variables of these requests will be created:

• An OpenSER::VDB::Value has the same elements as OpenSER's db_val_t

• An OpenSER::VDB::Pair inherits from ::Value and adds a (column) name

• An OpenSER::VDB::ReqCond inherits from ::Pair and adds an operator attribute

• An OpenSER::VDB::Column contains a column name and a column type

• An OpenSER::VDB::Result contains an array of ::Columns, and an array of arrays

(each containing a row) of ::Values

Each of the database functions inside the OpenSER module will convert the C variables

to a Perl representation. When a query function is implemented in Perl, it can directly

return an object of class OpenSER::VDB::Result, which is not (simply) possible in C.

These classes are visualized in the following class diagram:

The Perl functions need to take these argument types:

88

8.5: Virtual database

• Insert takes an array of ::Pairs

• Update takes an array of ::ReqConds and an array of ::Pairs

• Delete takes an array of ::ReqConds

• Query takes an array of ::ReqConds, an array of strings for the requested columns,

and a string for the sorting column

Array length parameters are not needed, as Perl implicitly stores array sizes.

8.5.2. Adapters

When a client module requests data from a database, it speci�es the table to query with

a call of the db_use_table function. The table to be used has to have the schema the

receiving module expects. Due to this, it is necessary to implement Perl functions that

re�ect the correct schema that is used by the client module.

Thus, the concept of adapter classes that can be used in conjunction with client

modules is introduced. For every module that needs to cooperate with the VDB mod-

ule, an adapter class is implemented. This adapter transforms the parameters of the

types above into simple imperative-style parameters for Perl functions. These adapters

must inherit from the base class OpenSER::VDB, resulting in classes in the namespace

OpenSER::VDB::Adapter::.

Virtual databases in turn contain one or more virtual tables; these provide the concrete

(imperative) functions that will �nally return the requested results. While the adapters

should be part of the code package, the VTabs will have to be implemented by a user.

For his convenience, a number of options are made available:

• User de�nes a single function. In this case, pass the operation name (insert, update,

query, delete) as the function's �rst parameter. Numerous client modules use only

a single database operation function (e.g. insert for acc, select from alias_db and

speeddial), so a single function may often be su�cient.

• User creates a Perl package (class). In this case, the class is initialized with a call

to its init() function. Subsequent calls to its operations are function calls to the

functions insert(), update(), query(), delete()

• User creates an object. This will provide better mechanisms to store internal data.

The class is instantiated with a call to a new() function (Perl does not really have

89

Chapter 8: Design

constructors); the insert(), update(), query(), delete() calls are then object

method calls instead of function calls1.

1The di�erence in the Perl semantics is small but existent: Functions receive the class name as their
�rst parameter, while methods receive a reference to their instance � similarly to the Java/C++
self variable

90

9. Implementation

Based on the detailed system design, the implementation process was straight forward.

As there are no sophisticated algorithms or data structures involved, the problems en-

countered primarily were of technical nature, although not always trivial to solve.

In this chapter, a number of technical details will be discussed which had to be taken

care of during the implementation phase. The tools involved will be brie�y listed, the

major technical hurdles will be explained and their solutions outlined.

The outcome of the implementation phase were two OpenSER modules and accom-

panying Perl code.

9.1. Tools

The tools involved during an implementation process are the technical basis on which

the system is built. This gives them a strategic signi�cance and makes their choice an

important one. Although this choice was largely predetermined by OpenSER's build

environment, a short comment on the tool chain will be given.

9.1.1. Build environment

OpenSER is implemented in C. Although it is not explicitly speci�ed, its language style

aims to be standard compliant C. Still, only the GNU, Sun and Intel C compilers are

supported in the build environment. The Perl and VDB modules were developed with

gcc 4.1.0; frequent compilation tests with version 4.1.2 were done.

In contrast to a majority of open source software, the OpenSER build environment

does not depend on a con�guration environment such as GNU autotools (autoconf,

automake) or Scons (an up-and-coming build tool), but rather on manually maintained

Make�les for the traditional (GNU) make. The prede�ned OpenSER Make�les provide

a �exible, simple to use basis for the creation of new modules.

The embedding of a Perl interpreter adds a small number of special tools to the queue.

Perl extensions such as the one implemented are written in a meta language called XS.

91

Chapter 9: Implementation

Although the actual functions are implemented in C, their interface description is a little

di�erent. The xsubpp preprocessor transforms this meta language into pure C.

9.1.2. Revision control

Another central component of software development is a versioning management system.

Again, OpenSER's choices preset the used tools in a certain way. Before the transition

to Subversion in February 2007, CVS was used for the OpenSER development. CVS has

a number of well known shortcomings:

• Directories cannot be removed from the repository

• Files and directories cannot be renamed without losing their history

• There is no notion of a �coherent system revision�. Every �le carries its own revision

number

To avoid these problems, the work on this thesis (including documentary as well as

implementation work) was supported by Subversion, a modern versioning management

system that eliminates most of CVS' weaknesses. In quite a short period of time, Sub-

version has become CVS' successor as the standard versioning management system in

the open source community, although it has to be seen as an �evolutionary successor�

rather than a revolution. Numerous valuable new concepts of other modern versioning

systems such as distributed repositories or multi-branch merging are not implemented

in Subversion.

Due to the fact that the code that was produced for this thesis was integrated into

OpenSER's core repository at a very early stage, this led to the problem that there were

two concurrent software repositories with almost, but not totally identical program code.

It would have been possible to represent OpenSER's code base as a separate branch in

the private repository. The system's merging features could then have been used to

transport modi�cations in either branch to the other one. As branching and merging

create other obstacles, this idea was not implemented.

9.2. Development process

After the evaluation of the results from the analysis that led to the concepts of an End

User Development environment and the integration of Perl, numerous prototypes for

92

9.3: Embedding Perl

multiple parts of the projects were developed. The embedding of Perl was examined (in-

cluding the �dlopen problem� described below), Perl extension stubs were implemented,

LDAP tests were done and database access was evaluated.

Based on the results, the development phase was straight forward and only few ob-

stacles were encountered. Thus, the resulting program code was soon submitted to the

OpenSER core repository, which was by that time a �HEAD� branch independent of the

stable 1.1.x version branch. Development continued in this branch, so a small number

of patches to the code was integrated to allow the continued use in newer code versions.

These modi�cations were done by the OpenSER core team:

• The API of the �stateless� module was changed to provide a function easily

accessible from other modules. The Perl module was updated to use this function

instead of the deprecated style.

• The FIFO functionality was replaced by the new Message Interface. A new inter-

face to the FIFO functionality of the Perl module was added.

• A compilation bug �x on obsolete Perl versions was applied a second time for a

second occurrence of the same bug

• 64bit compilation warnings were �xed

• The core �action� data structure type was modi�ed during the development phase.

The OpenSER team modi�ed the Perl module's use of this type.

Obeying the (implicit) OpenSER coding guidelines, the implemented modules reside in

respective subdirectories in the modules/ directory hierarchy; the Perl module is called

perl, while the virtual database is called perlvdb. As both share a single Perl interpreter

instance, the Perl libraries of both modules reside in a shared lib/ subdirectory of the

Perl module. Both source code trees have distinct documentation directories, which in

turn contain a samples directory.

9.3. Embedding Perl

Providing an embedding framework was a primary design target during the development

of Perl. The Perl documentation features a set of articles on the C language interface

[3] that gives a detailed introduction to the embedding mechanisms.

93

Chapter 9: Implementation

As can be seen in the design concept of the Perl module, there are two ways of

communication between the modules and the executed Perl functions: In a �rst step,

the module code has to execute a function or method that is implemented in Perl. The

returned data have to be evaluated afterwards. These steps are roughly outlined in the

�perlembed� document. Evaluation and creation/instantiation of Perl variables within

C is more thoroughly described in �perlguts� and �perlapi�, while the detailed semantics

of the di�erent ways to execute perl functions is clari�ed in the �perlcall� article.

9.3.1. The Perl interpreter

On Unix style platforms, the Perl interpreter is available as a shared object library (.so

�le). Some convenience wrappers make it easy to link against that library and include

the correct header paths in the compiler run.

Inside a C program, a Perl interpreter is an instance variable of the data type Perl-

Interpreter, usually called �my_perl� (if a di�erent variable name is used, an addi-

tional C preprocessor macro has to be executed each time the interpreter context is

switched). This interpreter variable is initialized by a small set of functions. Eventually,

the interpreter is ready to either evaluate script snippets located in the C source code

(with the eval_* functions), or it can parse and compile a conventional Perl �le (via

perl_parse). If scripts contain an initialization (prede�ned variables or global script

content), the script can be run via perl_run.

After parsing a �le, the call_* functions are available to invoke Perl subroutines

de�ned in the script. This is called callback in the Perl context.

9.3.2. Data types in Perl

Perl uses a di�erent way than C to pass arguments to and return values from functions;

additionally, the available data types di�er. Even semantically identical types � such

as strings or integers � are represented di�erently. Before calling a callback, possible

parameters have to be converted to Perl types; after the function returns, its return

value(s) need to be converted back. There are three primary data types in Perl, which

are Arrays (AV), Hashes (HV) and Scalars (SV). More specialized data types are certain

sub-types of scalars, e.g. integers (IV), strings (PV) or references (RV) [10]. As Perl

knows � unlike C � the concept of introspection, it is possible to request the sub-type of

a scalar value.

94

9.4: Perl module

Perl's notion of an object in the sense of object oriented programming is merely a

reference to a value, usually a hash, �blessed� into a class, so an object itself is a scalar

(SV) with sub-type RV. Blessing means that the variable reference is �attached� to a

class that provides methods for the variable.

9.3.3. Perl memory management

While traditional compiled languages mostly rely on explicit, developer-controlled mem-

ory management, most interpreted languages � including Perl � feature a dynamic

garbage collection mechanism. In case of Perl, this is accomplished by reference counting

[34].

Every object stored in memory is supplemented by a reference counter. Each pointer or

reference to this object increases this counter by one; when these references are removed,

the reference counter eventually drops to zero and the object itself can be destroyed.

When programming in pure Perl, the garbage collection scarcely becomes visible1.

When both a C program as well as a Perl script running therein need access to the Perl

data structures, this can become a problem, however: A data structure that is created

in a Perl script and passed back to the calling C program must explicitly be freed by

manually decreasing its reference counter. Another � in many cases su�cient � option

is to (implicitly or explicitly, depending on context) mark the object as �mortal� or

temporary and wrap the concerned code section in �magic� macros (ENTER/SAVETMPS,

FREETMPS/LEAVE) which will take care of reference counters. When di�erent Perl objects

with di�erent life times transit larger portions of code, this automatic handling mostly

fails, however, as some memory portions need to be freed while others may not.

Put brie�y, it is necessary to take care of the di�erences of dynamic and static memory

management at the interface of C and Perl.

9.4. Perl module

The Perl module consists of three di�erent entities:

• The module itself. Handles module initialization, interpreter instantiation and

execution of Perl functions

• The Perl extension. Provides Perl functions to access OpenSER internals

1Reference counting becomes a problem when there are cyclic references. This can also be an issue in
Perl.

95

Chapter 9: Implementation

• The Perl library. Features a set of convenience functions that will commonly be

used in the context of a SIP server

These parts will now be discussed in more detail. The di�culties and bugs encountered

during their implementation will be described.

9.4.1. The module itself

The OpenSER Perl module is a rather thin layer. Its parts can be subdivided into the

following categories:

• Declaration of the interface. What functions are exported by the module? What

arguments are available?

• Module initialization, construction and destruction. Allocating memory, Perl in-

terpreter initialization, import of �stateless� module API.

• Perl function call handling. Provides a set of four alternative functions to be used

from within the OpenSER con�guration.

While the �rst two parts are implemented in the module's perl.c, the latter is im-

plemented in perlfunc.c (and their respective header �les). perl.c follows the same

pattern as all other modules. This is the interface de�nition of the Perl module:

/*

* Exported functions

*/

static cmd export t cmds[] = {

{ "perl_exec_simple", perl exec simple1, 1, NULL, REQUEST ROUTE

| FAILURE ROUTE

| ONREPLY ROUTE

| BRANCH ROUTE },

{ "perl_exec_simple", perl exec simple2, 2, NULL, REQUEST ROUTE

| FAILURE ROUTE 10

| ONREPLY ROUTE

| BRANCH ROUTE },

{ "perl_exec", perl exec1, 1, NULL, REQUEST ROUTE | FAILURE ROUTE

| ONREPLY ROUTE | BRANCH ROUTE },

{ "perl_exec", perl exec2, 2, NULL, REQUEST ROUTE | FAILURE ROUTE

| ONREPLY ROUTE | BRANCH ROUTE },

{ 0, 0, 0, 0, 0 }

96

9.4: Perl module

};

/* 20

* Exported parameters

*/

static param export t params[] = {

{"filename", STR PARAM, &�lename},

{"modpath", STR PARAM, &modpath},

{ 0, 0, 0 }

};

[. . .]

30

/*

* Module interface

*/

struct module exports exports = {

"perl",

RTLD NOW | RTLD GLOBAL,

cmds, /* Exported functions */

params, /* Exported parameters */

0, /* exported statistics */

mi cmds, /* exported MI functions */ 40

0, /* exported pseudo-variables */

mod init, /* module initialization function */

0, /* response function */

destroy, /* destroy function */

child init /* child initialization function */

};

The second line of the module interface shows the �ags to be used while initializing the

module with the standard library �dlopen� call and re�ects one of the major problems

that occurred during the implementation.

9.4.1.1. The �dlopen problem�

On POSIX style systems such as Unix, the function dlopen is used to dynamically

load shared libraries during runtime. OpenSER uses this call to load its modules at

runtime. In addition to the �le name of the library to be loaded, dlopen expects a

bitmap of possible �ags. On most common Unix variants, the dlopen implementation

provides at least �ags for speci�cation on the load time (lazy vs. instantly). However, a

97

Chapter 9: Implementation

large problem was encountered with the �ags de�ning the symbol resolution mechanisms

(RTLD_GLOBAL vs. RTLD_LOCAL).

Perl itself uses the dlopen call to load Perl extensions necessary for its modules.

These extensions are a very fundamental technology in the Perl standard library as well

as in third party modules and in the implemented OpenSER module. The Perl dlopen

call uses the RTLD_GLOBAL �ag, while OpenSER originally loaded the modules with the

RTLD_LOCAL �ag. This led to rather obscure segmentation faults when Perl tried to

load libraries itself, probably due to unreachable symbols. Because of that, a patch

for OpenSER was proposed (and accepted, after a number of modi�cations) that lets

modules set their �desired� dlopen �ags: The module is loaded with the default �ags,

and its export structure is evaluated. When the �ags contained therein di�er from the

default set, the module is unloaded again and reopened with the correct �ags.

9.4.1.2. The �reload problem�

OpenSER does not have the feature of modifying its behavior during runtime. To re�ect

changes in the con�guration �le, it is necessary to restart the server process. In many

cases, this is creates problems, as it leads to unwanted downtimes of the system (although

restarting is quick, and infrequent restarts will be tolerable). It would therefore be helpful

if the Perl script running inside the interpreter could be reloaded without restarting the

whole server process.

OpenSER, similar to other server processes such as the Apache web server, forks

after starting. Several more or less identical processes run simultaneously, processing

requests in a round robin scheduling system. Because of that, also the instantiated Perl

interpreter is cloned. Launching a reload of the Perl script through one of the available

interfaces leads to a reloading of the script in the instance that �accidentally� handles

the request � the other instances will remain untouched.

The proposed way to implement an administrative function in a module is the man-

agement interface, MI, that has undergone extensive modi�cations during the time this

thesis was written. The old FIFO implementation was replaced by a much more general

interface which may be accessed currently by either a new FIFO interface, or by an

XMLRPC interface. A reload function was registered with this interface, leading to the

problems described above.

A proposal to extend the MI with a functionality to execute certain functions in all

instances of a module was submitted. A complying feature will eventually be integrated.

98

9.4: Perl module

9.4.1.3. The �global variable problem�

Although not directly a property of the Perl module itself, the following problem has

the same background as the reload problem and is thus described here.

As there are multiple instances of the Perl module running concurrently, global vari-

ables set in one instance are not �seen� by the remaining instances. On the one hand,

this is an advantage, as it is unnecessary to integrate locking mechanisms for the access

of these variables. Side e�ects are restricted to the same instance. On the other hand,

some types of functionality could rely on a shared memory. One might imagine a simple

�call counter�: each SIP message is counted in a global variable in Perl. The simple

implementation

my $globalcounter = 0;

my FILE;

sub count {

$globalcounter++;

print FILE "I counted $globalcounter messages. \n";

}

will not work, as the instances do not share their global variables.

This shortcoming can easily be circumvented by a number of di�erent methods. An

obvious solution would be a database back-end to store global information; in the case

above, an SQL database could store information on processed messages (or simply

count them). An even simpler method would be the usage of a Perl module such as

IPC::Shareable that allows to use POSIX-style shared memory to share conventional

Perl variables. Instead of the $globalcounter above, one could use a statement like

tie $globalcounter, IPC::Shareable,

{ key => "foo1", create => 1, destroy => 1 }

to bind the variable to a shared memory segment.

A sample script that demonstrates both cases is included with the Perl module.

9.4.2. The Perl extension

Returning to the topic of End User Development, the central part of the Perl module is

the Perl interface to SIP messages. OpenSER provides a large number of functions in

the core and in its modules to evaluate and modify di�erent parts of messages. These

functions should be available in Perl, too.

99

Chapter 9: Implementation

During the call of Perl functions, the pointer to SIP messages is transformed into a

Perl reference value that can be accessed just as a conventional Perl variable:

struct sip msg * msg;

[. . .]

m = sv newmortal();

sv setref pv(m, "OpenSER::Message", (void *) msg);

SvREADONLY on(SvRV(m));

[. . .]

XPUSHs(m); /* Push the message reference on the stack */

[. . .]

PUTBACK; /* make local stack pointer global */

10

call pv(fnc, G EVAL|G SCALAR); /* call the function */

In Perl, called functions then can fetch a reference to the SIP message from the stack.

This reference, belonging to the Perl class OpenSER::Message, allows functions to access

methods of this class. Similarly, a SIP URI structure is re�ected by the OpenSER::URI

class.

The implementation of the OpenSER::Message as well as the OpenSER::URI and

OpenSER::AVP classes is located in the Perl extension. As described above, an extension

is written in the meta language XS that is later translated into a C �le. The XS �le

name is openserxs.xs.

The accessor functions providing interesting functionality for Perl scripts can be sub-

divided into core and module functions. A uni�ed access method to the module functions

was implemented (leading to a major problem, see below), but the core functions had

to be re�ected individually.

For every �interesting� core function, an equivalent in the Perl extension had to be

developed. As these wrappers only need to validate the arguments and return the core

functions' results, most of them are extremely simple. One example of these functions

is the getBody function:

SV *

getBody(self)

SV *self

PREINIT:

PREINIT:

struct sip msg *msg = sv2msg(self);

100

9.4: Perl module

INIT:

CODE:

if (!msg) {

LOG(L ERR, "perl: Invalid message reference\n"); 10

ST(0) = &PL sv undef;

} else {

parse headers(msg, �0, 0);

ST(0) = sv 2mortal(newSVpv(get body(msg), 0));

}

This excerpt demonstrates:

• A possible option for returning values is putting them on the stack. In this case,

this is done by using the stack access macro ST.2

• �Non-values�, in C programs usually identi�ed by NULL pointers, zero integer

values or dedicated constants, are described by the Perl scalar value undef. On

the C side, undef may be referenced by the PL_sv_undef variable.

• Perl's SIP message reference is transformed back to the pure C pointer in a small

inline function sv2msg. This function checks the validity of the reference.

Module functions are handled somewhat di�erently. There is a single function module-

Function that tries to �nd a function according to the passed function name and parame-

ters. A module function that would be written as foo(�param1�, �param2�) in the con-

�guration �le can be called as $msg->moduleFunction(�foo�, �param1�, �param2�);

in Perl. The Perl autoloader mechanism implemented in Message.pm makes it possible

to directly call the function: $msg->foo(�param1�, �param2�);

Calling module functions is done by requesting and evaluating a function export struc-

ture for that function from the OpenSER core (similarly as it is done in the con�guration

�le parsing). Calls to these functions are preceded by parameter preprocessing.

9.4.2.1. The �constants problem�

In multiple contexts of the OpenSER code, constants are used for all kinds of information.

SIP messages can, for example, be either a request or a reply message, so the two

constants SIP_REQUEST and SIP_REPLY are created; a request message can belong to

2Another option is using the implicitly de�ned RETVAL variable. This technique is used e.g. in the
getType() function

101

Chapter 9: Implementation

exactly one of the message classes (�methods� such as INVITE, BYE, REGISTER, MESSAGE),

so appropriate constants are de�ned. In OpenSER, constants are implemented by the

preprocessor #define macro, or by enums.

Unfortunately, it is crucial also to have many of these symbolic names on the Perl side.

As the C language does not integrate any introspection features, there is no feature like

�give me all names and values in the enum�. Due to this reason, the only simple possibility

to re�ect the OpenSER constants was a manual transformation into Perl constants.

Perl also has a variety of options on how constants can be set. In this context, the

�constant� Perl module was used. Some hacks help the user to easily get access to the

constants de�ned, e.g. by automatically exporting them. All constants were de�ned in

a newly created package, OpenSER::Constants.

The Perl embedding environment features a tool called �h2xs�. This tool is Perl's

answer to the problem described here, which is anything but unique in this project.

The output of h2xs is a bloated Perl extension (.xs �le), featuring transformations for

enums as well as for #defines. h2xs creates a large overhead for the access of constants.

The output is meant to be a template for further development rather than to be a self-

contained system that can be reconstructed on a regular basis to re�ect modi�cations of

the base system's header �les. Due to these weaknesses, h2xs was not used in OpenSER's

Perl module.

[31] describes another way to transform C constants to Perl equivalents by (still man-

ually) creating constant functions for every C constant. Again, this procedure uses an

XS and slows down constant access by featuring constant functions instead of constant

variables. Considering the downsides, this technique was also turned down.

9.4.2.2. The ��xup problem�

During the discussion of the OpenSER code, the preparation of function arguments

by �xup functions (see section 3.3.3) was outlined. As described, the �xup functions

have full control over the data types they return, as they are implemented in the same

context as the functions themselves. During the initial implementation, the far-reaching

consequences of this fact had been ignored.

A module function such as xlog()3 allocates considerable amount of memory during

its �xup. The Perl module does not have any possibility of freeing this memory again.

3xlog is a logging function that understands pseudo variables. Other functions are considerably worse
in respect to their memory usage...

102

9.4: Perl module

Simply calling the C function �free�4 is not an option, as the underlying variable may

be something that cannot be freed at all (particularly an integer, or a pointer to a nested

structure).

First tests with the module functions did not show any abnormal behavior � that

was, not until the server was confronted with several thousands of consecutive calls,

depending on the setup5. In every call, a chunk of memory was allocated to contain the

�xup'd data set. This memory was never freed again.

There are several conceivable options of solving this problem; what they have in

common is the fact that the module that does the initial �xup will have to revert it

again. The Perl module does not have any knowledge about the data types of variables

returned by the �xup function and thus cannot free their memory, unless every available

module function is re�ected by a dedicated cleanup code snippet in the Perl module

(which would not be a good, clean architecture).

The following line is taken from the module's current moduleFunction implementation:

1∗ r e t v a l = exp_func_struct−>f ixup (&(act−>elem [2] . u . data) , 1) ;

The best option would be to pass an additional parameter to the �xup function that

lets it return a pointer to a di�erent function that frees the allocated space and obliterates

the process of the �xup. In many cases, this will be very easy: for �at structures, it

will be su�cient to return �pkg_free�; for integers, �NULL� would be su�cient. As the

implementation of this feature would be very invasive on literally every other module,

this task was postponed.

The module export structures are declared and implemented in sr_module.c/.h ,

including a typedef for �xup functions:

1typedef int (∗ f ixup_funct ion) (void∗∗ param , int param_no) ;

By adding a third parameter to the �xup function and an additional destruction

function type, the described problem could be solved:

1typedef int (∗ unf ixup_funct ion) (void∗ param) ;

2typedef int (∗ f ixup_funct ion) (void∗∗ param ,

3unf ixup_funct ion ∗unf ix , int param_no) ;

While calling the �xup function, the destruction function would be returned and could

later be used to remove the created structures. The example described above could then

be extended:
4In any case, OpenSER's internal memory management function, pkg_free, would have to be used
5The exact number depends on the size of OpenSER's internal memory and the module function that
is called from inside Perl. Problems occurred between 5'000 and 22'000 calls.

103

Chapter 9: Implementation

1int (∗ un f ix) (void ∗param) ;

2∗ r e t v a l = exp_func_struct−>f ixup (&(act−>elem [2] . u . data) , &unf ix , 1) ;

3[. . .]

4un f ix (act−>elem [2] . u . data) ;

The next OpenSER release 1.3 is expected to contain a mechanism such as the one

outlined here. Complete module function calling will then be available in the Perl

module.

9.4.3. The Perl library

The Perl environment implemented for the OpenSER module is rather small. The

following Perl packages are contained in the tree:

• OpenSER

• OpenSER::Message

• OpenSER::URI

• OpenSER::AVP

• OpenSER::Constants

• OpenSER::LDAPUtils::LDAPConf

• OpenSER::LDAPUtils::LDAPConnection

• OpenSER::Utils::PhoneNumbers

• OpenSER::Utils::Debug

While the �rst four packages provide functionality for the interface of OpenSER and the

Perl module, the OpenSER::LDAPUtils::* and OpenSER::Utils::* packages provide

basic functionality that may be interesting in this context. OpenSER::LDAPUtils::*

and OpenSER::Utils::PhoneNumbers were not developed by this thesis' author, but

were kindly provided by Collax GmbH. After minor modi�cations, they created a large

value for this project.

104

9.4: Perl module

OpenSER The root of the OpenSER Perl module namespace has quite a simple job: it

�bootstraps� the Perl extension (making the interpreter load the dynamic library), and

de�nes error handling functionality that logs Perl error messages and warnings through

OpenSER's logging functionality (instead of printing them to the standard error device,

which would not be sensible in this context). The only user accessible function is the

log method, which is implemented in the Perl extension.

OpenSER::Message and OpenSER::URI These two packages provide access to Open-

SER's central internal structures, i.e. SIP messages and URIs contained therein. Mes-

sage.pm adds an autoloading functionality to the package that lets the user access

$m->foo() as an abbreviation for $m->moduleFunction(�foo�). Additionally, an (empty)

DESTROY function is de�ned to prevent Perl from trying to autoload this function. The

e�ective functionality of this module is provided in the Perl extension. A list of imple-

mented methods is available in the module documentation.

OpenSER::URI is solely de�ned in the Perl extension; a .pm �le does not exist. Its

methods simply return a component of the examined URI.

OpenSER::AVP While the AVP implementation in OpenSER is not a distinct part of

the code, it is re�ected as a separate Perl package. Its three functions, add(), get() and

destroy(), directly interface the OpenSER core functions add_avp(), get_avp_val()

and destroy_avp(). Numerical as well as symbolical AVPs are supported.

The package's functions take and return scalars (strings or integers). The package

thus re�ects a namespace rather than an object class. It would have been possible to

create a dedicated OpenSER::AVP class with value and name attributes; as AVPs re�ect

rather atomic entities (namely scalar values), this option was rejected.

OpenSER::LDAPUtils::* Perl's LDAPmodule Net::LDAP provides sophisticated meth-

ods for LDAP access. Its routines are however not simple to use, so a simple wrapper

was added that provides more specialized implementations for simple requests.

OpenSER::LDAPUtils::LDAPConf is able to evaluate system con�gurations of the open

source LDAP implementation openLDAP; LDAPConnection's single remarkable method

is its search function that can use LDAPConf's con�guration to execute a search on an

LDAP server.

OpenSER::Utils::PhoneNumbers This module de�nes functions for conversion of

telephone numbers to their canonical form and vice versa. Within the University of

105

Chapter 9: Implementation

Freiburg, the canonical form of the number �1234� would be �+49-761-203-1234� � the

function canonicalForm does this translation6. In the same context, the number to

dial when contacting the canonical number �+49-761-203-4321� from the Collax GmbH

developing department would be �0-203-4321�. This transformation is provided by the

dialNumber method.

The dial context, consisting of a number of pre�xes for international, national, local

area and local calls, is set by the class constructor.

OpenSER::Debug During the development of the modules, the life cycles of Perl

objects had to be evaluated. This led to the creation of a Debug class that contains a

DESTROY handler logging the end of an object life time (as soon as it inherits from this

class). Despite minor di�erences, the DESTROY handler can be compared to a destructor

in languages like C++ or Java.

Eventually, this module could contain additional functionality for the context of de-

bugging.

9.4.4. Documentation

The last duty before the code release was writing a proper documentation. OpenSER

modules are documented with DocBook documents that may be transformed to text,

PDF, html and other formats. The regular OpenSER documentation features a common

style that is also used the Perl and VDB module documentation.

Perl modules usually feature a built-in documentation, the so-called �POD� (Plain

Old Documentation). This markup language provides some simple commands that can

be used to embed documentation into the code. The POD segments of a Perl module

or program can be extracted and transformed into numerous di�erent formats.

In case of the Perl module, a large part of the DocBook documentation is auto-

generated from the POD segments of openserxs.xs with the pod2docbook [51] tool.

Every function in openserxs.xs is preceded by a description that is later transformed

to user documentation.

The resulting module documentation is available on the OpenSER website and as a

README �le. Additionally, users can build their own PDF, HTML or text documen-

tation.

6Dashes added for easier readability

106

9.5: perlvdb module

9.5. perlvdb module

OpenSER's Perl Virtual Database is implemented in an analog way to other available

database modules: the module exports functions with special function names, describing

their functionality. The implemented functions are:

db con t* perlvdb db init(const char* url);

void perlvdb db close(db con t* h);

int perlvdb use table(db con t* h, const char* t);

int perlvdb db insert(db con t* h, db key t* k, db val t* v, int n);

int perlvdb db replace(db con t* h, db key t* k, db val t* v, int n);

int perlvdb db delete(db con t* h, db key t* k, db op t* o, db val t* v, int n);

int perlvdb db update(db con t* h, db key t* k, db op t* o, db val t* v,

db key t* uk, db val t* uv, int n, int un); 10

int perlvdb db query(db con t* h, db key t* k, db op t* op, db val t* v,

db key t* c, int n, int nc,

db key t o, db res t** r);

int perlvdb db free result(db con t* h, db res t* r);

This interface re�ects the functionality de�ned during the design phase.

Database modules may additionally export a �raw query� function that allows modules

to directly access databases with SQL statements, and a �fetch result� function that

fetches a number of rows from the current result set. While loading a database module,

the DB API checks for existing functions and sets �ags for existing and non-existing

functionalities in a capability matrix. Thus, database modules can provide an arbitrary

subset of database functions. As the VDB module targets towards accessing non-SQL-

databases, both the raw query and fetch result functions would not be appropriate in

the context and thus were omitted.

In contrast to the Perl module, where only a reference to the data structures is passed

between the C and the Perl layer, the data handled by the VDB module will usually be

fully consumed by the Perl functions, or will be fully created respectively. Thus, the full

data structures are transformed during the execution of a database request.

The implementation of the VDB module is divided into the following parts:

• Module interface

107

Chapter 9: Implementation

• C side implementations of database access functions

• Data transformation

• Perl class structure

• Adapters for database client modules

Similar to the last section, these parts will be discussed in more detail.

9.5.1. Module interface

Although database provider modules di�er in some ways from regular modules, the

implementation followed now well-known patterns. While regular OpenSER modules

�ag exported functions to be used in respective routing blocks, database modules do not

set any export �ags. Dedicated function export names mark the respective functions as

DB API implementations.

The perlvdb module uses the perl interpreter instance that is provided by the Perl

module. During module initialization, the VDB module checks whether the Perl module

is loaded. Coincidentally, a boolean module_loaded function was added in OpenSER

during the development phase of this thesis.

9.5.2. Database access functions

At the time of implementing the VDB module, the technique to call Perl functions

from within C was a well-known task. All functions in perlvdbfunc.c are restricted

to more or less three simple steps: Convert input data to Perl objects; call the correct

Perl method; convert output data in Perl objects to C data structures. The conversion

of data will be discussed in the next section. Calling Perl object methods di�ers only

slightly from calling conventional functions.

An important point during the method calling is to take account of Perl's memory

management. Objects returned by functions or methods will have to survive for a while

on the C side, so relying on the automatic handling of reference counters was error prone

and led to di�erent kinds of di�culties. A result set on Perl side has to be evaluated

by a number of additional Perl function calls; because of this, a number of di�erent life

times for di�erent objects occurred.

The VDB module uses its own wrapper to the Perl API function call_method. This

function uses the wrapper macros described in section 9.3.3, but explicitly increases the

108

9.5: perlvdb module

reference counter of the returned object. The calling function will have to decrease this

counter by explicitly calling SvREFCNT_dec() to obliterate the data structure.

9.5.3. Data transformation

OpenSER's database API provides only limited abstraction of the data structures han-

dled by the database modules. There are only four partly abstracted data types: keys,

values, operations and result sets. Keys and operations are nothing but typedefs for

strings; values are structs containing a type and the data itself. Result sets consist of a

set of column de�nitions, plus an array of rows; the latter, in turn, are arrays of values.

The VDB module partly resembles this structure, but in other parts tries to add a

bit of abstraction by adding the class structure described in the design chapter (section

8.5.1).

The data transformation functions in the VDB module are responsible for the trans-

formation of the C structures into sensible Perl objects.

The data transformation functions are tightly connected to the available Perl classes.

In the header �les, their class names are de�ned as constants.

These conversion functions are available:

AV *pairs2perlarray(db key t* keys, db val t* vals, int n);

AV *conds2perlarray(db key t* keys, db op t* ops, db val t* vals, int n);

AV *keys2perlarray(db key t* keys, int n);

SV *val2perlval(db val t* val);

SV *pair2perlpair(db key t key, db val t* val);

SV *cond2perlcond(db key t key, db op t op, db val t* val);

int perlresult2dbres(SV *perlres, db res t **r);

Although the implementation of these functions was rather simple � iterating arrays,

calling the Perl methods to create equivalent objects, and inserting these in Perl arrays �,

the interference with Perl's memory management became an issue during the debugging.

The following types of variables occur:

• Arrays of keys (requested keys in query)

• Arrays of key/value pairs (new data in insert/update/replace operations)

• Arrays of request conditions (key/operation/value data in query and update)

109

Chapter 9: Implementation

• Result sets (returned by queries)

When a Perl array is �lled with the av_push() function, the elements' reference counters

are not increased. Thus, it is su�cient to �ush the array with av_undef(); the elements

contained in the array will then automatically be removed.

The result set is a nested structure that is not as trivial to handle. Error handling

makes it di�cult to remove sub-structures at the correct position. Due to this, the

development of the perlresult2dbres() function was a little more elaborate and was

largely a trial and error process7.

9.5.4. Perl classes and adapters

The VDB class structure falls into two parts: classes for database objects such as values

or keys, and adapters for database accessing modules. Additionally, a number of sample

implementations for certain use cases were constructed.

It became apparent only at the time of implementation that it would be rather impos-

sible to create a sensible all-embracing virtual database. At this point, the design phase

was re-entered and the adapter concept was developed (see sections 8.3.2 and 8.5.2).

While the object classes (OpenSER::VDB::[Column,Pair,ReqCond,Result,Value])

are quite simple containers for a few variables and their accessor methods (getters and

setters), the adapters provide a little more sophisticated functions to convert operations

on a relational schema to imperative function calling.

As the VDB module is integrated with the Perl module and uses its interpreter in-

stance, the classes were added to the Perl module library path, instead of adding another

one. The sample VTab implementations for the adapters, however, are located in the

VDB doc/samples directory. Although it is expected that users can use some of these

scripts without major modi�cations, minor adaptions to local circumstances will be

necessary.

7The OpenSER::Utils::Debug class described above was largely created to examine the life times
of the VDB objects. The evaluation of this debugging led to the correct positioning of reference
incrementation and decrementation operations.

110

10. Testing

Large parts of the implementation phase were accompanied by functionality tests; an

independent testing and debugging phase was performed after the completion of the

modules, however. The testing techniques, tools and results will be described in this

chapter.

10.1. Debugging OpenSER

Server processes and other dynamic software are often di�cult to debug. While con-

ventional, algorithm-driven or regular user software may be started with identical input

data fairly easily, this is a challenge for Internet server software; printing debug output

to the screen is also not simply possible in this context, since server processes usually

do not have access to standard output devices.

Additionally, OpenSER uses the POSIX fork mechanism to spawn children that can

separately answer incoming requests. Watching one speci�c child is not su�cient.

It is an even bigger problem that server processes are much more di�cult to run in

a conventional debugger. In a few cases, the examination of Unix core dumps with

the GNU Debugger �gdb� was necessary, as in many cases conventional debugging with

breakpoints breaks the sensitive timing constraints inherent to a SIP server.

Fortunately, two of these problems can be circumvented through OpenSER's debug-

ging �ags: forking can be turned o�, so that only a main process has to be observed.

Printing to the standard output/error devices also results in text to appear on the screen.

The most powerful method in this context, however, is the usage of OpenSER's logging

facility. Depending on the log level that is passed as a parameter to the log function

and the system log level con�gured in the OpenSER's con�guration �le, a di�erent level

of verbosity can be reached. With a sensible distribution of debugging log() calls, the

system's reaction to externally triggered events can be examined.

111

Chapter 10: Testing

10.2. Testing environment

Large parts of the programmed functionality was tested concurrently with the implemen-

tation process. Events were triggered manually via an attached hardware SIP telephone,

a Snom 360. The receiving user agent usually was an instance of the Linux softphone

�twinkle� [14]. An Asterisk server in the same network provided a bridge to the ISDN

network.

Further tests were done using the SIP test programs sipsak (SIP Swiss Army Knife,

[43]) and SIPp [25].

10.2.1. sipsak

sipsak was developed at the Fraunhofer FOKUS. This tool is able to send multiple types

of SIP messages without the need to implement a full-featured SIP stack. Di�erent

message methods (REGISTER, INVITE, OPTIONS...) are supported; the central addresses

and URIs (Recipient, To, From, Via...) in the message can be passed via the command

line.

One of sipsak's features is to register devices with a user location server. This is a

useful feature when testing SIP servers in conjunction with SIPp, which does not feature

registration out of the box.

sipsak was developed with SER in mind. Other systems have not been tested by the

program's maintainers; however, sipsak is also used by the OpenSER developer team for

evaluation.

10.2.2. SIPp

SIPp was primarily developed to run performance tests against SIP servers. Basic sce-

narios are included to initiate rather simple INVITE/BYE calls, but almost arbitrarily

complex call �ows can be con�gured by using user-de�ned scenarios. These are created

by XML �les with a speci�c schema which de�nes messages and responses for certain

events.

SIPp has been used to evaluate the performance of the perl and perlvdb modules.

The program's value has also been demonstrated when a user found a memory leak in

the code during SIPp testing.

A detailed introduction to both sipsak as well as SIPp is available in [16].

112

10.3: Test cases

10.2.3. Computer hardware

The computer hardware for the testing environment consisted of a single computer that

contained the binaries of OpenSER, the softphone twinkle, and the test programs sipsak

and SIPp. Although SIPp consumes a considerable amount of computation power and

thus could have reduced OpenSER's performance while stress testing a system, the

advantage of not having to rely on a public Ethernet was of greater importance.

The computer's basic data were:

• AMD Athlon64 3700+ (2200 MHz)

• 1 GB RAM

• 80 GB Hitachi SATA hard disk (7200min-1)

• OpenSUSE 10.1 (Linux kernel 2.6.16.27)

10.2.4. Benchmark module

For the stress testing and benchmarking, a third OpenSER module was written, called

�benchmark�. It exports two functions, start_timer and log_timer, for user access

from the con�guration �le. Semantically identical functions bm_start and bm_log are

exported through an API.

By calling these functions before and after a block of execution context, the execution

duration of this block is logged. A granularity variable allows the user to print log

messages for every n'th call only. Average values are provided in the log. The underlying

gettimeofday system call returns timing information with microsecond accuracy.

A sample log line looks like this:

benchmark: reporting msgs/total/min/max/avg - since last report: \

100/4956/38/113/49.560000 | global: 2000/105597/38/521/52.798500

A very similar concept was realized by an OpenSER core developer, unfortunately

three weeks too late for this work.

10.3. Test cases

The reason for software testing is to ensure an appropriate level of quality. Although the

term quality has an implicit meaning, it is not easy to de�ne explicitly in the context of

software systems.

113

Chapter 10: Testing

Software engineering generally de�nes these primary quality characteristics for the

programmer perspective:

• Correctness

• Conformance

• Scalability/E�ciency

• Fault tolerance

• Maintainability

Other groups of people involved (e.g. users, clients, ...) have other perspectives and

quality needs.

In the context of an OpenSER module, testing is mainly useful for evaluating correct-

ness, conformance, e�ciency, and fault tolerance.

The following topics can now be examined:

• Does the system provide the expected functionality? (→ correctness, conformance)

• What impact do the modules have on OpenSER's performance? (→ e�ciency)

• How does the system cope with a large number of messages? (→ scalability)

• How does the system react on invalid messages? (→ fault tolerance, robustness)

• How does the system react on invalid user-developed Perl scripts? (ditto)

Correctness tests were already stressed during the development phase, but repeated

later more thoroughly. As soon as the code was regarded fairly stable, it was released to

the public and delivered with OpenSER's pre-1.2.0 branch. Numerous users thus were

included in a process similar to a beta test.

User feedback led to the detection of a central problem � the ��xup problem� described

in section 9.4.2.2.

114

10.4: Testing procedure and results

10.4. Testing procedure and results

As described above, the procedures of testing the conformance and correctness were not

formalized. Test functions for the module core functionalities were implemented and

tested, mainly through manual dialing of a telephone set.

A list of tasks was frequently updated, adding new topics, and marking others as

closed. By these means, the development was focused on the intended functionality.

Comparing the system's state with the initial goals of the design, the system conformed

to the expected behavior. The �x for the ��xup problem� described above has not yet

been implemented, but proposed.

The system conformance with the initial requirements will be discussed in the next

chapter.

10.4.1. Stress testing and performance evaluation

A central part of the testing phase was stress testing of the system. The primary expected

result was a view over the modules' performance impacts.

Stress testing was done with the SIPp program described above. The ��xup problem�

as well as other memory leaks were found � and partially �xed � in this phase. Besides

that, no further issues were found during the stress tests. Both the Perl module as well

as the VDB module survived 100'000 calls without any problem.

When confronting OpenSER with more than 250 calls per second, processing errors

were encountered: Firstly, the UDP processing of the underlying Linux system led to

retransmissions of messages; if OpenSER is con�gured not to use its forking mechanism,

these errors went away. Secondly, OpenSER's internal memory management became an

issue with more than 350 calls per second. These numbers were independent of calling

Perl functions from the routing con�guration; Perl calls did not have any impact on the

processing.

OpenSER as well as the underlying Linux system have a number of tuning possibilities.

As no impact by the perl/VDB modules was measurable, these tuning options were not

deeply investigated.

Performance evaluation was done by inserting gettimeofday system calls in the mod-

ule and through the separately implemented benchmark module. The timing was aver-

aged over 10'000 messages with 30 calls per second. These numbers result from tests in

the Perl module on the machine on which the modules were developed:

115

Chapter 10: Testing

Functionality Time in µs

Empty Perl function 24.123800
Simple message evaluation (callback) 29.435900
Additional simple regular expression 62.102549
Callback to alias_db 354.917400
LDAP request 6699.631400

The jitter during the 10'000 messages was rather low; output was created for every

100th message.

The simple message evaluation included a callback to an OpenSER core function to

get the recipient URI; the �simple regular expression� was:

my $ruri = $msg−>getRURI();

my $oldhost = "172.16.1.200";

my $newhost = "bilbobox.collax.com";

$ruri =� s/sip:([a−zA−Z]+)@($oldhost):([0−9]+)/sip:$1@$newhost:$3/;

The LDAP request was done with a remote LDAP server (ping time ∼ 0.2 ms);

although the time for the request is long in comparison with the other timings, less than

7 ms is still a su�ciently short period.

The following run time estimations can be derived from these �gures:

• Neither calling Perl nor callbacks to the OpenSER core (transition of �language

boundaries�) are expensive

• Perl processing (code execution) is not expensive

• Querying external sources � such as an SQL database, or the LDAP directory �

are one to two orders of magnitude more expensive. This is not related to Perl.

Taken together, the results show that the Perl module will not have a negative perfor-

mance impact on the running system.

For the VDB module, no full benchmarking tests were done due to two reasons:

Firstly, the importance of the VDB module is expected to be signi�cantly lower as the

Perl module's, as explained in chapter 11. Secondly, the expected results do not di�er

too much from the results presented here.

116

10.4: Testing procedure and results

During the evaluation of the Perl and VDB modules, benchmarks were compared. See

section 11.3.1 on page 130 for the discussion of the results.

10.4.2. Invalid messages

One of OpenSER's core key features is its message parser. This subsystem is responsible

to transform the text-structured SIP messages to a format that is easily interpretable

by the modules.

As the Perl module relies on the parsing in the core, the module itself does not

separately deal with invalid messages. Due to this, dedicated tests were not driven.

10.4.3. Invalid Perl code

A central aspect of the Perl module implementation was its behavior regarding invalid

user scripts. The term �software quality�, especially concerning correctness, comes into

play here:

• User scripts can be syntactically wrong. During module initialization, the parser

will not accept the code. The server will not start up.

• User scripts can generate uncaught runtime errors. In Perl, this leads to a �die�. By

calling Perl's API function call_pv with the G_EVAL �ag set, the error is handled

correctly. OpenSER does not crash; instead, the library's die-handler creates error

logging messages. Internal script processing cannot be assessed here, however:

Invalid internal states may be reachable if the developer does not explicitly take

care of them.

• User scripts can hang or run forever. The �halting problem� prevents the system

from detecting whether a script can reach hanging conditions. A �watchdog� could

theoretically stop script processing after a speci�ed time; this was not implemented.

Di�erent �buggy scripts� were tested in OpenSER, both intentionally and unintention-

ally. Perl correctly handled syntactical errors on startup. Sensible handling of internal

dies � explicitly via calling the die() function, or implicitly by creating wanted runtime

errors � were handled in the expected ways.

117

Chapter 10: Testing

10.4.4. Regression tests and coverage analysis

As described, tests were driven concurrently with the implementation. Regression tests

were done after the implementation phase to re-validate the functionality of the Perl

module. For the VDB module, testing and implementation were more tightly integrated,

but concluding tests were also done.

During the regression tests, it became apparent that the pseudoVariable() exten-

sion function was incorrectly using the malloc/free and pkg_malloc/pkg_free func-

tions: While memory was allocated through OpenSER's internal memory management

(pkg_malloc), it was freed with the system call free(). This led to a segmentation

fault when using certain variables, as OpenSER tried to re-use the memory that was

ultimately freed by the module. This bug was interesting for two reasons: Firstly, it only

cropped up with a subset of the available pseudo variables; secondly, it was incidentally

discovered at the same time by a di�erent person. At the time the problem of that user

was understood, the �x was already in the CVS repository.

A test script with a single function was written that calls a large part of the API

functions de�ned in the Perl extension and in the library. The GNU program/library

�gcov� and the Perl module Devel::Cover provide a coverage analysis of these tests.

It was attempted to reach a reasonably high coverage of the central components of the

modules.

118

Part V.

Discussion

119

11. Discussion and Conclusion

Shortly after the Perl module had been published, people in di�erent positions started

using it. One of the users was working for a major U.S. American cable network that

also provided IP and VoIP services. The company is planning to use the Perl module in

their production environment.

Although this thesis' sponsor, Collax GmbH, is not yet involved in the implementation

of a VoIP product, a white paper on possible options has been written. A crucial point

in that paper was the integration of a VoIP environment with an LDAP service which

is a key component in Collax products. The Perl module provides features for this

integration.

The positive practical implications of the Perl module can be seen in these two use

cases. It remains to be shown that the original tasks of this thesis are solved. Addi-

tionally, the Perl and VDB modules will be compared with each other and with other

approaches to the EUD and LDAP topics.

11.1. Revisiting Use Cases

In section 5.2, a set of data categories in use in a VoIP system was de�ned, derived from

a number of use cases. Later, these data were related to entities in the OpenSER server.

At this point, these topics will be revisited to check the system's conformance with the

initial requirements.

The following table contains the same categories as the one developed in the require-

ments analysis in section 5.3.

121

Chapter 11: Discussion and Conclusion

Data Solution

Identity information As already mentioned, this term is not de�ned well.

Caller IDs can be modi�ed through the modi�cation of SIP

messages in various ways, e.g. by calling the module functions

provided by the textops module.

The location database and the usrloc module are central

parts of OpenSER. There does not seem to be a reason to

substitute the integrated databases for a di�erent technology.

This is especially true as the usrloc module features inter-

nal caching; dynamic data will not instantly become active.

While it would be possible to use the VDB module as a back-

end for usrloc, scenarios where this is reasonable will be rare.

See below for discussions of the subscriber, user and alias

databases.

Voice box The newly available data back-ends can provide references to

voice boxes. As OpenSER does not handle voice mail itself,

the exact behavior heavily depends on the given infrastruc-

ture.

Address book(s) Mapping of user identities with their addresses is possible

through the alias_db and speeddial modules in connection

with the VDB module. Directly accessing a Perl function

through the Perl module is even simpler.

The latter module also allows for arbitrary modi�cation of the

SIP message, including the Caller ID.

User database The subscriber database may either be realized through cur-

rent authentication modules backed by the VDB module, or

by arbitrary new functionality in the Perl module.

Using a dedicated Triple-A system such as RADIUS is the

preferred idea; see the discussion in the next section.

Aliases database The VDB module includes an adapter class for the alias_db

module. Directly modifying the SIP message through the Perl

module, however, is a lot simpler.

122

11.1: Revisiting Use Cases

Data Solution

Conference room

database

As discussed, OpenSER only handles marginal properties of a

conference room system. Databases that include information

about conference rooms can be accessed through Perl func-

tions.

Arbitrary permission management for OpenSER is well pos-

sible by features of the Perl module.

User groups Although the management of user groups through RADIUS

is the preferred setup (see below), the group module could be

used together with the VDB. An adapter has not yet been

implemented.

Meta databases As the VDB and Perl modules provide a separation from

underlying database schemata and technology, meta data in

databases accessed by OpenSER do not interfere with this

software.

Registration/location

information

The usrloc module could be used with the VDB. This is

generally not a good idea.

A Perl-only reimplementation is possible.

Status information The presence information within OpenSER's pua and

presence modules can be stored through the VDB module.

Arbitrary Perl functions can make this information available

for other entities of a VoIP system.

Accounting Although an AAA-System is the preferred concept in the con-

text of accounting, passing data to the VDB module is well

possible. Under certain circumstances, it might be a good

idea to pre-process the data passed from the acc module.

The implementation of an accounting script using the Perl

module will also be an option.

123

Chapter 11: Discussion and Conclusion

Data Solution

Permission/

authorization

database

In contrast to other modules, the permissions module reads

data from specially formatted text �les, rather than from a

relational database. A database may be used as a cache only.

To use the VDB module in this context, one might either make

up fake cache entries or substitute the permission module's

data access mechanism with an SQL back-end.

Arbitrary dynamic permission management is very simple

with the Perl module. A Perl function returning 1 for ac-

cepted and -1 for denied calls can take arbitrary decisions for

authorization.

A demonstration of such a function can be found below in

section 11.2.4.

Authentication

database

Before implementing a VDB back-end for the auth_db mod-

ule, a user should always consider using a RADIUS server im-

plementation. Using the VDB is possible, however; an adapter

class is provided for demonstration purposes.

This list demonstrates that all data categories discussed in the requirements analysis

can now be processed through either the Perl or the VDB modules. In most cases, both

options are available.

The interaction of all of these categories with LDAP directories � originally the pri-

mary target of this work � is well possible through the OpenSER::LDAPUtils::* Perl

class hierarchy.

11.2. Speci�c solutions

A number of the cases discussed above will be described here in further detail. Imple-

mentations for central tasks have been developed as examples. Their main aspects will

be outlined.

11.2.1. Aliases

OpenSER's main task is the routing of SIP messages to the destined recipient. A central

component in this concept is the mapping of addresses to others. This concept can be

124

11.2: Specific solutions

realized through aliases. The task of alias mapping is relatively simple: Extract the

relevant components of the SIP message and preprocess them; query the database with

these information; if a result is found, postprocess it and rewrite the current RURI.

OpenSER's alias_dbmodule provides a single function alias_db_lookup that queries

the database for the recipient URI of the current message and, if found, substitutes the

RURI with the one found in the database.

Being one of the smaller modules, the alias_db module consists of approximately

450 lines of C code. Most of that code implements the module infrastructure (func-

tion and parameter export, database interface binding, ...); the implementation of the

alias_db_lookup function consists of about 130 lines of code. Additional 15 lines per-

form the rewriting of the RURI. The core function's task is the preparation of a database

query, the execution of the query and the processing of the result.

11.2.1.1. alias_db and perlvdb

The VDB class hierarchy contains an adapter class for the alias_db module that allows

for simple implementations of arbitrary data access for aliasing. A matching VTab im-

plements a function that takes two parameters (original username/domain) and returns

a hash with two elements (new username/domain). Sample VTabs for LDAP access

as well as for Perl hashes are included. The following code excerpt shows the LDAP

version:

sub query() {

my $self = shift;

my $alias username = shift;

my $alias domain = shift;

my $uri = "$alias_username\@$alias_domain";

my $ldap = new OpenSER::LDAPUtils::LDAPConnection();

my @ldaprows = $ldap−>search("(&(ObjectClass=inetOrgPerson)(mail=$uri))", 10

"ou=people,dc=collax,dc=com", "uid");

if (@ldaprows[0]) {

my $ret;

$ret−>{username} = @ldaprows[0];

$ret−>{domain} = "voip";

return $ret;

125

Chapter 11: Discussion and Conclusion

}

return;

} 20

This implementation expects the LDAP schema to use addresses with the pattern

user@host, while the alias_db module explicitly extracts the user and host part of

these addresses. The alias_ldap VTab shown above thus has to concatenate the strings

again. A considerable amount of time is lost on pointless string operations.

11.2.1.2. Aliasing in Perl

As described above, the necessary operations for �nding aliases are relatively simple. A

Perl-only implementation providing aliasing information similar to the one above could

look like this:

sub ldapalias {

my $m = shift;

my $uri = $m−>getParsedRURI();

my $user = $uri−>user();

my $dom = $uri−>host();

my $ldap = new OpenSER::LDAPUtils::LDAPConnection();

my @rows = $ldap−>search("(&(ObjectClass=inetOrgPerson)(mail=$user\@$dom))", 10

"ou=people,dc=collax,dc=com", "uid");

if (@rows) {

my $newuri = "@rows\@voip";

$ret = $m−>rewrite ruri("sip:$newuri");

return 1;

} else {

return −1;

}

} 20

This version has a number of advantages over the VDB variant described above: data

does not have to traverse the database API, unnecessary string operations are omitted,

and it is more legible than the relational wrapping shown above.

Both versions solve the task equally well.

126

11.2: Specific solutions

11.2.2. Authentication

In section 4.2.4 (Authentication services), it was explained that secure network services

should be implemented based on dedicated authentication mechanisms. In this context,

RADIUS servers will be the most common choice; its successor DIAMETER is not yet

widely available1, while Kerberos is not speci�ed for use with SIP.

In small installations, setting up a RADIUS server can possibly be an overkill. Open-

SER therefore contains the auth_db module that authenticates against a relational

database through OpenSER's DB API. This module can be used in conjunction with

the VDB adapter that was implemented for this thesis. The downside of this method is

that this technique requires access to the unencrypted plain text passwords. A sample

VTab that stores accounts in a Perl hash has been written for this thesis.

Comparing the other topics described in this chapter, SIP authentication mechanisms

involve some more intelligence, as di�erent kinds of cryptographic hashes have to be

calculated and compared. A good understanding of the underlying processes as well as

the concerned standards, especially the Digest Authentication de�ned by RFC 2617, is

crucial. It is of course well possible to implement these cryptographic functions in Perl,

but the risk of creating security leaks is real � even for experienced software developers.

This leads to a gradation of preferred setups: The most secure option is a AAA

system (RADIUS or DIAMETER); if that is not possible, OpenSER's standard auth_db

module should be used. If a non-standard database back-end is absolutely necessary,

the administrator should choose the VDB variant. The Perl reimplementation should

never be necessary and thus should rather not be considered.

11.2.3. Accounting

SIP does not always provide su�cient information to resolve the obvious telephony

accounting information �user A called number B; the call began at time X and lasted for

T�2. Due to this reason, reliable accounting in common environments should be done on

an entity that intercepts the transported media streams � such as an Asterisk server.

Yet, OpenSER's acc module provides accounting for SIP calls that do not involve a

media gateway. Again, the recommended setup is using a dedicated accounting back-

1In contrast to OpenSER's RADIUS implementation, the DIAMETER module does not rely on well-
established libraries but implements the protocol on top of raw IP tra�c. This technique is at least
questionable.

2Imagine an established call; then, one plug is pulled. Although the call is interrupted, a �BYE�
message is never transmitted. SIP-only accounting will not be able to realize the end of the call.

127

Chapter 11: Discussion and Conclusion

end � such as RADIUS or DIAMETER. For these systems, the acc module provides

acc_rad_request and acc_diam_request functions. Relational databases may be used

by calling the acc_db_request function.

A � fairly simple � VDB adapter for the acc module has been written. As accounting

only writes to the database through the �insert� operation, a VTab only needs a single

function that takes an array of values. The sample flatstoresimulator VTab writes

the passed values to a text �le; adding the values to a di�erent type of data back-end

would of course be possible.

If a user A calls user B who in turn forwards the call to user C, regular accounting will

not detect a relation between the two �legs� of a single call. The acc module provides

so-called multi call-legs accounting which will identify a connection of two messages.

If this technique is not used (it is turned o� by default; its implementation is not too

sophisticated, either), the database accounting function just extracts some pieces of

information from every SIP message processed. The acc module is not dialog-aware. As

such, the acc_db_request function is quite simple and could easily be reimplemented

in the Perl module.

11.2.4. Authorization

From the perspective of a SIP server, authorization means the acceptance or denial of

SIP messages under certain circumstances. When a SIP server rejects INVITE messages,

calls cannot be established. Some of the 40x status codes de�ned in the SIP protocol

can be used to signal di�erent aspects of failed authorization3:

• 401 - Unauthorized

• 402 - Payment required

• 403 - Forbidden

• 407 - Proxy Authentication Required

OpenSER uses conventional con�guration statements to implement the concept of au-

thorization depending on certain circumstances:

...

if (method=="INVITE") {

3See the SIP RFC [46] for a more detailed description of these and other response codes.

128

11.2: Specific solutions

if (!arbitrary permission function()) {

sl send reply("403", "Forbidden");

exit;

}

}
...

With the Perl module, arbitrary functions can be implemented that return -1 for

forbidden, and 1 for allowed connections. The following sample demonstrates a function

that will randomly allow 90% of calls and reject the other 10%:

sub arbitrary permission function {

my $r = rand();

if ($r <= 0.9) {

return 1;

} else {

return −1;

}

}

A Perl function will commonly evaluate the current time and date to allow or deny

calls.

OpenSER features a permissions module that can authorize requests based on IP

addresses/networks, URIs or SIP addresses. Unlike the majority of OpenSER's modules,

this module does not operate on a relational database, but uses text �les of a style similar

to Unix hosts.allow/deny �les. A relational database may be used for internal caching.

Due to this design, a cooperation with the Perl module is not sensible. As the module

does not use the database API to request its con�guration, the VDB module cannot

be used, either. The caching database could theoretically be relayed through the VDB,

creating fake cache entries; this design was not implemented, as it is unclean.

The task of the permissions module thus can be described like this: evaluate a text

�le, compare data from the SIP message with this �le, and return true or false. The

module does not provide any level of abstraction from the technologies in use. This is

not primarily due to bad design, but rather due to the fact that the �intelligent� part

of the module is the processing of the input �les. Querying an internally built data

structure upon a request is a simple process.

Authorization based on the group module may be relayed through the VDB module.

129

Chapter 11: Discussion and Conclusion

11.3. Perl vs. ...

Based on the results, the modules can be compared with each other and with other

projects with a similar scope.

11.3.1. Perl vs. VDB

During the End User Development discussion, it was found out that EUD environments

should have access to internal and external interfaces of a system. This led to the

development of two modules � the Perl module attaching to the module interface, and

the VDB module, jumping in between the database API and arbitrary data sources.

In section 11.1, it was discussed which of the two new modules may be used to provide

functionality in the di�erent contexts. In almost all contexts, processing the necessary

data is quite simple by using the Perl module. In a number of cases, the VDB module

can be used to provide an arbitrary data source for other modules' requests.

The only case where a VDB implementation would be a better choice than a pure Perl

implementation is OpenSER's database authentication module, auth_db. A Perl-only

version would need complex handling of hashing and encryption functions � not a simple

task. In all other cases, a simple and clean reimplementation of given functionality will

be easier and shorter to develop, as can be seen in the comparison of the ldap aliasing

implementations above. A benchmarking test on both of these versions was done. The

following table shows average results for 5000 processed messages with simple aliasing

implementations that directly fetch data from internal Perl variables:

Test Time in µs

Perl, alias found 82.342600
Perl, alias not found 73.033400
alias_db on VDB, alias found 439.739800
alias_db on VDB, alias not found 342.038000

alias_db on mysql, alias found 353.686889
alias_db on mysql, alias not found 341.994200

These benchmarks as well as the discussion of the use cases above show that in real

world environments the usefulness of the VDB module will probably be signi�cantly

lower than the Perl module's. The benchmark also shows that the performance impact

of Perl is very low, compared to that of a database request. Last but not least, it shows

that the processing speed of the VDB is signi�cantly lower than the Perl module's. This

130

11.3: Perl vs. ...

is not caused by design faults, but rather by the complex processing involved in the data

transformation.

11.3.1.1. VDB usage

While the original requirements can mostly be ful�lled with the functionality provided

by the Perl module, the VDB module may be the more interesting technology from

an academic point of view. It extends the currently existing database layer instead of

providing low level SIP message processing.

The following table describes the suitability of VDB relaying for all modules in the

OpenSER release 1.2.0 that use the DB API:

Client module Suitability Reason(s)

acc o See discussion above.

alias_db - Aliasing in Perl module is trivial.

auth_db - LDAP should be implemented through RADIUS.

Using other non-relational DBs will rarely be

reasonable. In these cases, VDB can be used.

avpops o In most environments, AVPs will not be set manually.

No reason for external databases.

cpl-c - - The DB is an internal storage for CPL scripts.

domain ++ Could query a list of all local domains which will

commonly be present in LDAP directories.

domainpolicy o Module is only necessary in sophisticated setups.

RDBMS can be used there.

group + Group data are not quite as security sensitive as user

credentials. E.g., Unix groups could be queried.

imc - Internal database for IM conferences. No external

interface.

jabber - - DB is for internal use only. Module is deprecated

(xmpp should be used).

131

Chapter 11: Discussion and Conclusion

Client module Suitability Reason(s)

lcr - -/o The lcr module in release 1.2.0 requires the

DB_CAP_RAW_QUERY capability for raw SQL

requests. Not available in VDB.

This restriction was removed shortly after the release;

therefore using the VDB is now possible. The

usefulness of this technique is questionable, as the

requested data usually will not be available in

long-established setups.

msilo - DB is used as internal data storage (for SIP

�MESSAGE� method messages).

pa ? Package regarded as �unstable� and obsoleted by

presence module.

pdt + Reasonable (This module provides �pre�x to domain

translation�)

permissions - - This module uses a DB as an internal cache, not as a

data source. Authorization is simple in Perl module.

presence - Internal data storage

pua - Internal data storage

siptrace - siptrace simply stores full messages. The Perl function

getMessage() will be simpler and faster; unlike with

the siptrace module, however, callbacks from the tm/sl

are currently not possible.

speeddial + Reasonable

uri_db ++ Rarely used module; if used, currently unregistered but

existing users could be found.

usrloc - - The usrloc module uses the database as an internal

storage; therefore, setting up di�erent databases is

questionable. The module's performance has a great

impact on OpenSER's global processing speed;

interference with its default behavior is not advisable.

Some modules can be found that may well be used with the virtual database back-end.

132

11.3: Perl vs. ...

11.3.2. Perl vs. SEAS

In December 2006, a module called �SEAS�, the Sip Express Application Server, was

contributed to the OpenSER code. This module provides the interface to the Appli-

cation Server WeSIP. This server runs so-called SIP Servlets, which are Java Servlets

very similar to web servlets e.g. running in a Tomcat web server. The seas module

in OpenSER provides a single function that relays processed messages to the WeSIP

server, using a proprietary binary protocol. Through this interface, SIP messages are

transformed into the Java class javax.servlet.sip.SIPServletRequest or javax.servlet.sip.-

SIPServletResponse. An API not unlike the Perl module's provides access to the data

within the message object.

WeSIP also provides an EUD environment, similar to the the Perl module. There are

a number of signi�cant di�erences, however:

Programming language While Perl focuses on simplicity and is widely used by system

administrators, Java is more di�cult to learn. Sophisticated data processing and the

integration of web services may possibly be better implemented in Java; however, the

simple requests and message modi�cations provided by the Perl module API are easier

to use and to maintain.

Focus WeSIP was designed to create a converged SIP/HTTP environment, while the

Perl module was meant to provide access to long-established data sources for OpenSER.

The di�erent focuses of the projects have had large impacts on the solutions, though the

outcome � EUD environments for OpenSER � was similar.

WeSIP tries to integrate a SIP server with other existing resources. A (proprietary

binary) message interface between OpenSER and WeSIP is used for this task. The Perl

module does not inherently feature distributed networking mechanisms, although distant

resources may be requested from within Perl.

Availability and license The WeSIP server as well as the SEAS connector are in a

Beta state and thus currently not available for production use. Although the server will

be available for free in non-commercial environments, commercial usage will require (yet

unknown) license fees.

The Perl module is available as a stable part of the OpenSER 1.2 release and fully

licensed under the GPL, while the VDB module may be part of the next release. Future

steps have to be discussed with the OpenSER developer team.

133

Chapter 11: Discussion and Conclusion

11.3.3. Perl and VDB vs. ldap modules

During the requirements analysis, existing LDAP binding modules for OpenSER's an-

cestor SER were introduced.

The �rst one, implemented at the ETH Zürich, provides a one-on-one substitution of

the recipient URI. By providing data in a conforming LDAP schema, aliasing is possible.

Considering the log messages spread over the code, the module is not meant to be used

as-is in production environments. It seems obvious that the module was developed for

the special needs within the university, but adaption to other environments should well

be possible.

The code contributed by Rogelio Baucells in 2006 is more sophisticated. Nevertheless,

the underlying fundamental ldap module provides a new interface that cannot be used in

the context of existing code; the only existing implementation uses the LDAP module as

an authentication back-end. Porting existing modules to use the LDAP interface would

be a laborious task.

Both modules provide access to LDAP, but do not consider other data sources. The

VDB module, on the other hand, makes LDAP handling easy while not losing track of

other data sources.

11.3.4. Perl vs. SIP-CGI

The SIP-CGI interface de�ned by RFC 3050 [32] shall provide a SIP analog to HTTP

CGI scripts. While SIP-CGIs are passed full SIP messages, the Perl interface can rely

on OpenSER's sophisticated parser and its functionality.

OpenSER does not have a SIP-CGI interface, but provides an exec module with a

similar scope.

11.4. The VDB approach

The virtual database implemented for OpenSER represents an approach to access foreign

data sources in software systems. Although the idea was developed for SIP environments,

it seems reasonable to apply the same concept to other scenarios. A future investigation

could examine the constraints on the projects on which the concept could be applied

and evaluate in which software systems a virtual database could be used.

OpenSER uses a limited subset of relational database functionalities. Its requests use

the database tables as two-dimensional arrays; subselects, joins and other sophisticated

134

11.5: Perspective

database operations are not required. A future study could examine whether these types

of requests can be relayed to functions in the sense of programming languages as well.

11.5. Perspective

The Perl and VDB extensions to the SIP router OpenSER that were developed during

this thesis seem to provide a reasonable way to access long-established data sources in

environments in which the program is to be installed. Additionally, the Perl module lets

users implement arbitrarily complex routing decisions.

The combination of the Perl module and the virtual database were compared to other

solutions with similar scopes � data access and EUD environments � in the last section.

It was shown that they are able to circumvent shortcomings of other projects for di�erent

reasons.

In real world environments, the Perl module has to prove its usability and stability.

The proposed modi�cations to the module �xup functions are expected to be imple-

mented in the next months and will create an additional value for the functionality

available for Perl scripts. All module functions can then be used from within Perl scripts.

It could then be evaluated whether a full routing con�guration can be implemented in

Perl, using the normal con�guration �le only as a stub.

New functionality may be implemented in all parts of the code, i.e. in the Perl library

as well as in the extension. The APIs provided by other modules, especially by the tm

and sl modules, could provide valuable features for user scripts.

A comparison with other programming languages and possible integrations of them

could show whether the choice of Perl as an EUD environment was the right choice.

The embedding of Perl was the solution for the notation of functions. While this is well

possible with an imperative language � including Perl �, a functional language might be

used in an alternative implementation of an EUD environment.

Conceptionally, the more interesting module is the virtual database � despite the

fact that it will probably not be used in as many real world setups. The concept of

using a programming language for database mapping could be evaluated in contexts of

completely other database related systems, too.

The integration of the VDB module in the public OpenSER repository is still an open

task. Before doing so, more thorough testing is required, e.g. concerning its reaction on

incorrect result sets. Additional adapters, especially for the ones marked with �+� or

�++� in section 11.3.1.1, should be implemented.

135

Chapter 11: Discussion and Conclusion

136

Part VI.

Appendix

137

A. Accompanying CD and website

The CD included with this document includes the following media:

• A PDF version of this document

• PDF versions of some of the papers referenced

• OpenSER 1.2.0 including the Perl module

• The PerlVDB module

• The benchmark module

With the exception of papers under copyright, identical information is available from

the website

http://www.bastian-friedrich.de/study/diploma/

139

http://www.bastian-friedrich.de/study/diploma/

Appendix A: Accompanying CD and website

140

B. Glossary

ACD: Automatic Call Distribution. In a call center, incoming calls are appended

to a queue. As soon as a dispatcher becomes available, the oldest call is

passed to this user

API: Application Programming Interface. Includes class, type, method and func-

tion interfaces of a software system

CGI: Common Gateway Interface. Web servers o�er this interface to run programs

that deliver dynamic content.

CPAN: Comprehensive Perl Archive Network. A repository of free, publicly available

Perl modules. Almost every free existing Perl module can be downloaded

from CPAN

CPL: Call Processing Language. An XML-based programming language speci�ed

in RFC 3880 �to describe and control Internet telephony services�

CPS: Calls Per Second. A metric used to describe the scalability of VoIP systems.

CTI: Computer Telephony Integration

CVS: Concurrent Versions System. A widely used open source versioning/revision

control system

DBMS: Database Management System

DNS: Domain Name Service

FIFO: First In/First Out. A bu�ering approach. In this context, it refers to Unix

FIFO bu�ers or named pipes to support a pipes and �lters model of com-

munication

FOKUS: Fraunhofer Institut für o�ene Kommunikationssysteme. The SIP Express

Router (SER) was developed here

141

Appendix B: Glossary

GNU: Recursive acronym for �GNU's Not Unix�. This project provides software for

Unix-like, but open source operating systems

GPL: GNU General Public License. The most widely used open source license.

The Linux kernel as well as SER and OpenSER are licensed under the GPL

HTTP: Hyper Text Transfer Protocol. Used in the World Wide Web for requesting

and transmitting web content

IAX: InterAsterisk eXchange. Proprietary network protocol used between multiple

instances of the Asterisk VoIP server

IETF: Internet Engineering Task Force

ITU-T: International Telephony Union, Telecommunication Standardization Unit

IVR: Interactive Voice Response. The system automatically processes the �rst

steps of user interaction, e.g. more detailled classi�cation, customer ID, etc.

LDAP: Lightweight Directory Access Protocol. Today's standard directory access

protocol and sometimes used synonymously for the directory and the server

program

MI: Message Interface. The administration interface of OpenSER. Multiple ways

of access are possible, e.g. through FIFO or XMLRPC requests

MTA: Mail Transport Agent. A �mail server�, such as a post�x, qmail or sendmail

installation

MySQL: One of the best known open source database management systems

ODBC: Open Database Connectivity. A standard software API that provides uni�ed

access for various SQL databases

OLE: Object Linking and Embedding. Microsoft's variant of a component model.

Implements interfaces for interaction of di�erent programs

POD: Plain Old Documentation. An inline documentation format used by Perl.

POTS: Plain Old Telephony System. Refers to conventional, non-internet telephony

142

PSTN: Public Switched Telephone Network. While the term could theoretically

include VoIP networks (which can be public switched, too), it usually is

synonymiously used with POTS

RAS: Remote Access Service

RDBMS: Relational Database Management System. Most actively used DBMS belong

to this category

RPID: Remote Party ID. A string representation of a user, e.g. his name. The same

acronym is used for Rich Presence Information Data which can also be used

in SIP environments.

RTCP: Realtime Transport Control Protocol

RTP: Realtime Transport Protocol

RURI: Recipient Uniform Resource Identi�er. The destination address of SIP mes-

sages

SDP: Session Description Protocol. Is used e.g. for media negotiation in SIP based

telephony

SIP: Session Initiation Protocol. Core protocol in most modern VoIP networks

SQL: Structured Query Language. The standard query language for relational

database management systems

TCP: Transmission Control Protocol

TLS: Transport Layer Security. An encryption protocol, successor of SSL (Secure

Socket Layer)

UAC: User Agent Client. Refers to the user agent that sends a SIP request, e.g.

initiating a call

UAS: User Agent Server. Refers to the user agent that responds to a SIP message

UDP: User Datagram Protocol. A slim IP-based protocol for datagrams. SIP

tra�c is usually transmitted through UDP

143

Appendix B: Glossary

UM: Uni�ed Messaging. The integration of e-mail, fax, telephony/voice mail,

SMS, MMS and others to allow user access to all of these media through a

single interface

XS: eXternal Subroutine. Through this mechanism, native/C code can provide

functions for Perl scripts

144

C. Tools

During the work on this thesis, the following meta tools have been used for text editing

and evaluation purposes:

• Text processing: LYX 1.4.x, teTEX 3.0 (for LATEX and PDFLATEX)

• BibTEX and the GUI kbibtex for citations, references and bibliography

• X�g for graphics

• Subversion for revision control

• POD::DocBook for the implemtation documentation

• luma and JXplorer for LDAP evaluation

• http://tools.ietf.org/html/ for pretty prints of RFC documents

145

Appendix C: Tools

146

Bibliography

[1] ENUM-Testbetrieb bei der DENIC eG. http://www.denic.de/de/enum/

allgemeines/trial/index.html.

[2] mod-perl 2.0 API. http://perl.apache.org/docs/2.0/api/index.html.

[3] Perldoc: Internals and C language interface. http://perldoc.perl.org/

index-internals.html.

[4] SIOD: Scheme in One Defun. http://www.cs.indiana.edu/scheme-repository/

imp/siod.html.

[5] The unixODBC Project home page. http://www.unixodbc.org/.

[6] voip-info.org: Open Source VOIP Software. http://www.voip-info.org/wiki/

view/Open+Source+VOIP+Software.

[7] What is mod-perl? http://perl.apache.org/start/index.html.

[8] Wikipedia.org (german), Callcenter. http://de.wikipedia.org/wiki/

Callcenter.

[9] Wikipedia.org, Information is not data. http://en.wikipedia.org/wiki/

Information?oldid=81809486#Information_is_not_data.

[10] Gisle Aas. PerlGuts Illustrated. http://gisle.aas.no/perl/illguts/.

[11] Rogelio J. Baucells. SER: LDAP and LDAP authentication modules. http://www.

iptel.org/ldap_and_ldap_authentication_modules.

[12] Marcel Baur. ldap SER Module. http://www.ethworld.ethz.ch/technologies/

sipeth/ser_modules/ldap.

[13] Dieter Conrads. Telekommunikation: Grundlagen, Verfahren, Netze. Vieweg, Wies-

baden, 2004.

147

http://www.denic.de/de/enum/allgemeines/trial/index.html
http://www.denic.de/de/enum/allgemeines/trial/index.html
http://perl.apache.org/docs/2.0/api/index.html
http://perldoc.perl.org/index-internals.html
http://perldoc.perl.org/index-internals.html
http://www.cs.indiana.edu/scheme-repository/imp/siod.html
http://www.cs.indiana.edu/scheme-repository/imp/siod.html
http://www.unixodbc.org/
http://www.voip-info.org/wiki/view/Open+Source+VOIP+Software
http://www.voip-info.org/wiki/view/Open+Source+VOIP+Software
http://perl.apache.org/start/index.html
http://de.wikipedia.org/wiki/Callcenter
http://de.wikipedia.org/wiki/Callcenter
http://en.wikipedia.org/wiki/Information?oldid=81809486#Information_is_not_data
http://en.wikipedia.org/wiki/Information?oldid=81809486#Information_is_not_data
http://gisle.aas.no/perl/illguts/
http://www.iptel.org/ldap_and_ldap_authentication_modules
http://www.iptel.org/ldap_and_ldap_authentication_modules
http://www.ethworld.ethz.ch/technologies/sipeth/ser_modules/ldap
http://www.ethworld.ethz.ch/technologies/sipeth/ser_modules/ldap

Bibliography

[14] Michel de Boer. twinkle softphone. http://www.twinklephone.com/.

[15] P. Faltstrom and M. Mealling. RFC 3761, The E.164 to Uniform Resource Identi�ers

(URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM), April

2004.

[16] Gerd Flaig, Martin Ho�mann, and Siggi Langauf. Internet-Telefonie. VoIP mit

Asterisk und SER. Open Source Press, München, January 2006.

[17] H. Fulton, G. Hurst, and H.E. Fulton. The Ruby Way. Sams Publishing, 2001.

[18] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design Patterns. Elements

of Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1

edition, March 1995.

[19] Giorgos Gousios and Diomidis Spinellis. A Comparison of Portable Dynamic Web

Content Technologies for the Apache Web Server. In Proceedings of the 3rd In-

ternational System Administration and Networking Conference SANE 2002, pages

103�119, May 2002. Best refereed paper award.

[20] Martin Grabmüller. Multiparadigmen-Programmiersprachen. Research report 2003-

15 in Forschungsberichte Fakultät IV � Elektrotechnik und Informatik, Technische

Universität Berlin, October 2003.

[21] Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel, and Oliver Schmidt. The Apache

Modeling Project, volume 5 of HPI Technical Reports. July 2004.

[22] Wolf-Dieter Haaÿ. Handbuch der Kommunikationsnetze. Springer, Heidelberg,

1997.

[23] M. Handley, V. Jacobson, and C. Perkins. RFC 4566, SDP: Session Description

Protocol, July 2006.

[24] Mathias Hein, Michael Reisner, and Dr. Antje Voÿ. Voice over IP: Sprach-Daten-

Konvergenz richtig nutzen. Franzis' Verlag, Poing, 2002.

[25] Olivier Jacques and Richard Gayraud. SIPp. http://sipp.sourceforge.net/.

[26] T. Johnson, S. Okubo, and S. Campos. RFC 3944, H.350 Directory Services, De-

cember 2004.

148

http://www.twinklephone.com/
http://sipp.sourceforge.net/

Bibliography

[27] Franz-Joachim Kau�els. Moderne Datenkommunikation: Eine strukturierte Ein-

führung. Datacom, Bergheim, 1994.

[28] Rolf-Dieter Köhler. Voice over IP. mitp, Bonn, 2002.

[29] Vaclav Kubart. iptel.org: Vaclev's Performance Tests. Memory management in

SER. http://www.iptel.org/ser/doc/performance/vaclev.

[30] Georg Lausen. Datenbanken. Grundlagen und XML-Technologien. Elsevier, Heidel-

berg, January 2005.

[31] Marc Lehmann. XS - Einführung und esoterische Anwendungen. http://www.

goof.com/pcg/marc/xs.html, March 2000.

[32] J. Lennox, H. Schulzrinne, and J. Rosenberg. RFC 3050, Common Gateway Inter-

face for SIP, January 2001.

[33] Dr. Thomas Letschert. Nichtprozedurale Programmierung in Python und anderen

Sprachen. February 2005.

[34] Yossi Levanoni and Erez Petrank. An on-the-�y reference-counting garbage collector

for java. ACM Trans. Program. Lang. Syst., 28(1):1�69, 2006.

[35] Henry Lieberman, Fabio Paternò, and Voker Wulf, editors. End User Development,

volume 9 of Human-Computer Interaction Series. Springer, 2006.

[36] Netcraft Ltd. Netcraft Web Server Survey. http://news.netcraft.com/

archives/web_server_survey.html.

[37] Wenbo Mao and C. Boyd. Development of authentication protocols: some miscon-

ceptions and a new approach. In Computer Security Foundations Workshop VII,

1994. CSFW 7. Proceedings, pages 178�186, June 1994.

[38] M. Mealling and R. Daniel. RFC 2915, The Naming Authority Pointer (NAPTR)

DNS Resource Record, September 2000.

[39] Daniel-Constantin Mierla. Build SIP-based VOIP Service With RADIUS

AAA Using OpenSER And FreeRadius. http://www.openser.org/docs/

openser-radius-1.0.x.html.

[40] P. Mockapetris. RFC 1034, Domain names - concepts and facilities, November 1987.

149

http://www.iptel.org/ser/doc/performance/vaclev
http://www.goof.com/pcg/marc/xs.html
http://www.goof.com/pcg/marc/xs.html
http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.openser.org/docs/openser-radius-1.0.x.html
http://www.openser.org/docs/openser-radius-1.0.x.html

Bibliography

[41] P. Mockapetris. RFC 1035, Domain names - implementation and speci�cation,

November 1987.

[42] Athanasios Nianias. Master thesis: Passwort im Datenexpress - Mit LDAP(ower)

durchs Netzwerk. http://www.ks.uni-freiburg.de/download/diplomarbeit/

SS06/09-06-ldap-anianias/, July 2006.

[43] Nils Ohlmeier. sipsak - SIP swiss army knife. http://sipsak.org/.

[44] Norman Ramsey. Embedding an interpreted language using higher-order functions

and types. In IVME '03: Proceedings of the 2003 workshop on Interpreters, virtual

machines and emulators, pages 6�14, New York, NY, USA, 2003. ACM Press.

[45] C. Rigney, S. Willens, A. Rubens, and W. Simpson. RFC 2865, Remote Authenti-

cation Dial In User Service (RADIUS), June 2000.

[46] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. RFC 3261, SIP: Session Initiation Protocol, June

2002.

[47] Vespe Savikko. Generative and Incremental Approach to Scripting Support Im-

plementation. In Ban Al-Ani, Hamid R. Arabnia, and Youngsong Mun, editors,

Software Engineering Research and Practice, pages 105�111. CSREA Press, 2003.

[48] Andreas Schael. TeleFAQ.de: Anrufer�lter - Schutz vor ankommenden Rufen.

http://www.telefaq.de/anruferfilter.html.

[49] Maik Schmitt and Rainer Jochem. Voice over IP. Fortgeschrittenenpraktikum. Mas-

ter's thesis, Universität des Saarlandes, 2004.

[50] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 3550, RTP: A

Transport Protocol for Real-Time Applications, July 2003.

[51] Nandu Shah. Pod::DocBook. http://search.cpan.org/dist/Pod-DocBook/lib/

Pod/DocBook.pm.

[52] Venkita Subramonian, Liang-Jui Shen, and Christopher Gill. The Design and Per-

formance of Dynamic and Static Con�guration Mechanisms in Component Middle-

ware for Distributed Real-Time and Embedded Systems. 25th IEEE International

Real-Time Systems Symposium, 5 December 2004.

150

http://www.ks.uni-freiburg.de/download/diplomarbeit/SS06/09-06-ldap-anianias/
http://www.ks.uni-freiburg.de/download/diplomarbeit/SS06/09-06-ldap-anianias/
http://sipsak.org/
http://www.telefaq.de/anruferfilter.html
http://search.cpan.org/dist/Pod-DocBook/lib/Pod/DocBook.pm
http://search.cpan.org/dist/Pod-DocBook/lib/Pod/DocBook.pm

Bibliography

[53] Alistair Sutcli�e. Evaluating the costs and bene�ts of end-user development. In

WEUSE I: Proceedings of the �rst workshop on End-user software engineering,

pages 1�4, New York, NY, USA, 2005. ACM Press.

[54] T-Com. Das Sicherheitspaket Plus für T-Net und T-ISDN. http:

//www.t-com.de/is-bin/INTERSHOP.enfinity/WFS/EKI-PK-Site/de_

DE/-/EUR/ViewBrowseCatalog-Start?CategoryName=00011600005\

&CategoryDomainName=EKI-PK-DefaultCatalog.

[55] Prof. Dr. Peter Thiemann. Seminar: Anwendungsorientierte Programmiersprachen.

2000.

[56] Miklos Tirpak and Juha Heinanen. OpenSER permissions module. http://www.

openser.org/docs/modules/1.2.x/permissions.html, 2003.

[57] Arie van Deursen, Paul Klint, and Joost Visser. Domain-speci�c languages: an

annotated bibliography. SIGPLAN Not., 35(6):26�36, 2000.

151

http://www.t-com.de/is-bin/INTERSHOP.enfinity/WFS/EKI-PK-Site/de_DE/-/EUR/ViewBrowseCatalog-Start?CategoryName=00011600005&CategoryDomainName=EKI-PK-DefaultCatalog
http://www.t-com.de/is-bin/INTERSHOP.enfinity/WFS/EKI-PK-Site/de_DE/-/EUR/ViewBrowseCatalog-Start?CategoryName=00011600005&CategoryDomainName=EKI-PK-DefaultCatalog
http://www.t-com.de/is-bin/INTERSHOP.enfinity/WFS/EKI-PK-Site/de_DE/-/EUR/ViewBrowseCatalog-Start?CategoryName=00011600005&CategoryDomainName=EKI-PK-DefaultCatalog
http://www.t-com.de/is-bin/INTERSHOP.enfinity/WFS/EKI-PK-Site/de_DE/-/EUR/ViewBrowseCatalog-Start?CategoryName=00011600005&CategoryDomainName=EKI-PK-DefaultCatalog
http://www.openser.org/docs/modules/1.2.x/permissions.html
http://www.openser.org/docs/modules/1.2.x/permissions.html

Bibliography

152

Index

AAA services, 33

Accounting, 50

ACD, 47

Answering machine, 49

Arrays, 94

Asterisk, 12

Attribute/value pair, 56

AVPs, 85

b2bua, 10

Back-to-back user agent, 10

Call forking, 49

Call hunt group, 47

Caller ID, 49, 122

Calls per second, 115

Capability �ags, 59, 86, 107, 132

Capability matrix, 107

Challenge-response authentication, 32

Circuit switched network, 7

Client side scripting, 69

Coding guidelines, 93

Collax GmbH, 2, 104, 121

Computer Telephony Integration, 8

Conference room, 50

CPAN, 68

CPL, 131

CTI, 8

CVS, 92

DBMS, 30

dbtext, 52

DENIC, 35

Digest authentication, 32

Directory, 31

dlopen, 97

DNS, 34

DocBook, 106

e164.arpa, 34

Event, 58

Export �ags, 108

FIFO, 93

FOKUS, 15

Forking, 111

Garbage collection, 95

getBody, 100

GNU, 91

Google Talk, 9

GPL, 15

H.323, 8

h2xs, 102

Hashes, 94

HTTP, 10

Hyper Text Transfer Protocol, 10

153

Index

IAX, 12

IETF, 8

INI style, 56

Internet Engineering Task Force, 8

IPC, 99

iptelorg, 15

ISDN, 7

ITU-T, 8

IVR, 47

JavaScript, 69

Jingle, 9, 12

LDAP, 31

LDAP module for SER, 52

LDAP schema, 31

ldapalias, 126

Lines of code, 21

Location service, 13

Logging, 111

Malware, 74

Media gateway, 10, 12

Media server, 10

Method, 10

module_exports, 22

MTA, 28

Music on hold, 10

MySQL, 19

Namespace, 72, 86, 105

ODBC, 19

Out-of-band signalling, 8

Packet switched network, 8

PBX, 7

Perl data types, 94

Perl functions, 84

Perl interpreter, 94

perlresult2dbres, 110

Pingtel, 13

Plain Old Telephone System, 7

POD, 106

pod2docbook, 106

PostgreSQL, 19

POTS, 7

Prototypes, 92

PSTN, 7

Public Switched Telephone Network, 7

Quality characteristics, 114, 117

RAS, 33

RDBMS, 30

Reference counting, 95, 108

Registrar service, 13

Regular expression, 116

Relational algebra, 86

Relational calculus, 86

Relational schema, 53

Remote Access Service, 33

Request/Response Model, 10

Result set, 109

RPID, 49

RTCP, 9

RTP, 9

Runtime errors, 117

RURI, 10

Scalars, 94

Schema, 31

SDP, 9

Session Initiation Protocol, 8

Shared library, 94, 97

154

Index

Shared memory, 99

SIP, 8, 9

SIP event, 58

SIP method, 10

SIP proxy, 10

SIPfoundry.org, 13

SipX, 13

Skype, 9

Small and Medium size Business, 2

SMB, 2

Speed dialing, 49

Subversion, 92

TCP, 10

Tekelec, 15

TLS, 10

Tool chain, 91

Triple-A services, 33

Type signature, 75

Type system, 68

UAC, 10

UAS, 10

UDP, 10, 115

UM, 8

Uni�ed Messaging, 8

unixODBC, 19

User agent, 10

User groups, 50

VBScript, 69

Virus, 74

VOCAL, 13

Voice box, 49

Voice mail, 49

Watchdog, 117

Wrapper pattern, 84

xlog, 20, 102

XS, 91, 100

xsubpp, 92

155

	Introduction
	From telephony...
	... to Voice over IP
	About this work
	Objectives
	Structure of this thesis
	References and related work

	VoIP technology
	Telephony and VoIP
	Telephony
	A brave new VoIP world
	The SIP protocol
	Open source technology
	Asterisk
	OpenSER
	Other products

	OpenSER
	What is OpenSER?
	OpenSER from a user's perspective
	The OpenSER configuration
	A sample routing block
	Database bindings
	Pseudo variables and AVPs
	In a nutshell...

	OpenSER from a code perspective
	Types of modules
	Export structure
	Parameter fixup
	In a nutshell...

	Data handling
	About data and information
	Distinguishing data and information
	Types of information
	Configuration data
	Transitional data
	Authentication and authorization

	Technologies
	The simple life: plain text
	Relational databases and SQL
	Directory services: LDAP
	Authentication services
	RADIUS and DIAMETER
	Kerberos

	ENUM
	Status quo

	Analysis and specification
	Requirements analysis
	Use case analysis
	Use case: Incoming phone call
	Use case: Outgoing phone call
	Use case: Call transfer (External: VoIP/POTS, internal: VoIP)
	Use case: Call deflection
	Use case: conference calls (internal, external, mixed)
	Use case: SIP registration (attaching a phone) and authentication
	Use case: user and authorization/permission management
	Use case: personal self-administration
	Use case: Accounting
	Use case: ACD, IVRThe possibilities provided by Interactive Voice Response are arbitrarily large. The methods of user input, the methods of processing the input and the meaning for the call center are varying. Although the work of this thesis should provide features that help for a good IVR technology integration, IVR itself will not be discussed any further., Call hunt groups

	Categorizing data
	Data handling in OpenSER
	Data paths in OpenSER
	Data management bindings in OpenSER

	Refining the requirements

	Specification
	A flexible database backend for OpenSER
	Digression: configuring vs. programming
	Functions in OpenSER modules
	Expressing a data path
	Possible tradeoffs
	Evaluating the options

	End User Development
	End User Development in dynamic systems
	Embeddable languages
	Perl
	PHP
	Lua
	Python
	Ruby
	LISP and Scheme
	Basic dialects
	Other languages

	Analyzing EUD implementations
	Apache and mod_perl
	Analyzing the framework

	Office suites and macro languages
	Technical aspects of Visual Basic for Applications

	Gimp and Scheme

	Properties of EUD environments
	Interfaces
	Design constraints

	Design, Implementation, Testing
	Design
	Considerations on an EUD environment for OpenSER
	Choosing a language

	Data paths
	Design patterns
	The bridge pattern
	The adapter pattern

	A Perl module
	Virtual database
	Class structure
	Adapters

	Implementation
	Tools
	Build environment
	Revision control

	Development process
	Embedding Perl
	The Perl interpreter
	Data types in Perl
	Perl memory management

	Perl module
	The module itself
	The ``dlopen problem''
	The ``reload problem''
	The ``global variable problem''

	The Perl extension
	The ``constants problem''
	The ``fixup problem''

	The Perl library
	Documentation

	perlvdb module
	Module interface
	Database access functions
	Data transformation
	Perl classes and adapters

	Testing
	Debugging OpenSER
	Testing environment
	sipsak
	SIPp
	Computer hardware
	Benchmark module

	Test cases
	Testing procedure and results
	Stress testing and performance evaluation
	Invalid messages
	Invalid Perl code
	Regression tests and coverage analysis

	Discussion
	Discussion and Conclusion
	Revisiting Use Cases
	Specific solutions
	Aliases
	alias_db and perlvdb
	Aliasing in Perl

	Authentication
	Accounting
	Authorization

	Perl vs. ...
	Perl vs. VDB
	VDB usage

	Perl vs. SEAS
	Perl and VDB vs. ldap modules
	Perl vs. SIP-CGI

	The VDB approach
	Perspective

	Appendix
	Accompanying CD and website
	Glossary
	Tools
	Bibliography

